RESUMEN
Various protein kinases are implicated in the pathogenesis of human cervical cancer and many kinase inhibitors have been used to regulate the activity of protein kinases involved in the disease signaling networks. In the present study, a systematic kinase-inhibitor interactome is created for various small-molecule inhibitors across diverse cervical cancer-related kinases by using ontology enrichment, molecular docking, dynamics simulation and energetics analysis. The interactome profile is examined in detail with heatmap analysis and heuristic clustering to derive promising inhibitors that are highly potential to target the kinome of human cervical cancer in a multi-target manner. A number of hit and unhit inhibitors are selected and their cell-suppressing effects are tested against human cervical carcinoma HeLa, from which several inhibitor compounds with high cytotoxicity are successfully identified. A further kinase assay confirms that these inhibitors can generally target their noncognate kinases HER3 and BRaf in cervical cancer with a high or moderate activity; the activity profile are comparable with or even better than that of cognate kinases inhibitors, with IC50 values ranging between 4.8 and 340.6 nM for HER3 and between 37.2 and 638.2 nM for BRaf. This work would help to identify those unexpected kinase-inhibitor interactions in human cervical cancer and to develop new and efficient therapeutic strategy combating the disease.