Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Mol Life Sci ; 80(6): 148, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37178259

RESUMEN

Mutations in GJB2 (Gap junction protein beta 2) are the most common genetic cause of non-syndromic hereditary deafness in humans, especially the 35delG and 235delC mutations. Owing to the homozygous lethality of Gjb2 mutations in mice, there are currently no perfect mouse models carrying Gjb2 mutations derived from patients for mimicking human hereditary deafness and for unveiling the pathogenesis of the disease. Here, we successfully constructed heterozygous Gjb2+/35delG and Gjb2+/235delC mutant mice through advanced androgenic haploid embryonic stem cell (AG-haESC)-mediated semi-cloning technology, and these mice showed normal hearing at postnatal day (P) 28. A homozygous mutant mouse model, Gjb235delG/35delG, was then generated using enhanced tetraploid embryo complementation, demonstrating that GJB2 plays an indispensable role in mouse placenta development. These mice exhibited profound hearing loss similar to human patients at P14, i.e., soon after the onset of hearing. Mechanistic analyses showed that Gjb2 35delG disrupts the function and formation of intercellular gap junction channels of the cochlea rather than affecting the survival and function of hair cells. Collectively, our study provides ideal mouse models for understanding the pathogenic mechanism of DFNB1A-related hereditary deafness and opens up a new avenue for investigating the treatment of this disease.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Humanos , Ratones , Animales , Conexinas/genética , Conexina 26/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Audición
2.
J Org Chem ; 88(23): 16376-16390, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37948045

RESUMEN

A vinylogous addition reaction of allyl aryl ketones with good yields and excellent regioselectivity catalyzed by squaramide catalysts has been developed. A series of chiral tertiary alcohols and bicyclic pyrrolidones could be synthesized in good to excellent yields, enantioselectivities, and diaseteroselectivities. Both experimental results and DFT calculations indicate that 1,2-addition reaction is favorable when the reaction is employed at a lower temperature, while the 1,4-addition/cyclization pathway is favorable when the reaction is employed at a higher temperature. Furthermore, the formation of compound 4 can potentially arise from either the 1,4-addition/cyclization pathway or retro-aldol reaction of compound 3, followed by subsequent 1,4-addition/cyclization.

3.
Org Biomol Chem ; 21(24): 4999-5013, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37264805

RESUMEN

In this study, we developed an organocatalyst-controlled site-selectivity switchable Friedel-Crafts reaction of 1-naphthols and 2,3-dioxopyrrolidines. The o-selective Friedel-Crafts reaction was achieved with chiral tertiary amines, while the p-selective Friedel-Crafts reaction was accomplished with Brønsted acids or Lewis acids. With this protocol, a range of functionalized polycyclic 2-pyrrolidinone derivatives were prepared. Moreover, theoretical mechanistic investigations provided insights into the site-selectivity reaction pathway and the origin of chiral induction for the o-selective Friedel-Crafts reaction.

4.
Clin Genet ; 102(2): 149-154, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35599357

RESUMEN

The pathogenic variants in KCNQ4 cause DFNA2 nonsyndromic hearing loss. However, the understanding of genotype-phenotype correlations between KCNQ4 and hearing is limited. Here, we identified a novel KCNQ4 mutation p.G228D from a Chinese family, including heterozygotes characterized by high-frequency hearing loss that is progressive across all frequencies and homozygotes with more severe hearing loss. We constructed a novel murine model with humanized homologous Kcnq4 mutation. The heterozygotes had mid-frequency and high-frequency hearing loss at 4 weeks, and moved toward all frequencies hearing loss at 12 weeks, while the homozygotes had severe-to-profound hearing loss at 8 weeks. The degeneration of outer hair cells (OHCs) was observed from basal to apical turn of cochlea. The reduced K+ currents and depolarized resting potentials were revealed in OHCs. Remarkably, we observed the loss of inner hair cells (IHCs) in the region corresponding to the frequency above 32 kHz at 8-12 weeks. The results suggest the degeneration of OHCs and IHCs may contribute to high-frequency hearing loss in DFNA2 over time. Our findings broaden the variants of KCNQ4 and provide a novel mouse model of progressive hearing loss, which contributes to an understanding of pathogenic mechanism and eventually treatment of DFNA2 progressive hearing loss.


Asunto(s)
Pérdida Auditiva de Alta Frecuencia , Canales de Potasio KCNQ , Animales , China , Modelos Animales de Enfermedad , Pérdida Auditiva de Alta Frecuencia/genética , Humanos , Canales de Potasio KCNQ/genética , Ratones , Mutación
5.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931994

RESUMEN

Two new triarylamine-based diamine monomers, namely, N,N'-bis(4-methoxyphenyl)-N,N'-bis(4-(4-aminophenyl-4'-methoxyphenylamino)phenyl)-p-phenylenediamine (3) and N,N'-bis(4-methoxyphenyl)-N,N'-bis(4-((4-aminophenyl-1-naphthyl)amino)phenyl)-p-phenylenediamine (7), were successfully synthesized and led to two series of electroactive polyamides by polycondensation reactions with common aromatic dicarboxylic acids. The polymers demonstrated multicolored electrochromism, high optical contrast, and remarkable enhancements in redox and electrochromic stability. Compared to other triarylamine-based polymers, the studied polyamides exhibited enhanced electrochromic stability (only 3~6% decay of its coloration efficiency at 445 nm after 14,000 switching cycles) at the first oxidation stage. The polyamides also showed strong absorption in the near-infrared region upon oxidation. Polymers with multicolored electrochromism and high redox stability can be developed by incorporation of four triarylamine cores in each repeat unit and electron-donating methoxy groups on the active sites of the triphenylamine units.

6.
Org Lett ; 24(42): 7806-7811, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36259648

RESUMEN

Two reagent-controlled regiodivergent annulation protocols for Achmatowicz products with vinylogous nucleophiles have been developed, which furnished a series of bicyclic cyclopenta[b]pyrans and 8-oxabicyclo[3.2.1]octane derivatives in 28-90% yields. Plausible mechanisms were proposed to involve either Pd-catalyzed Tsuji-Trost allyl-allyl coupling and concomitant Michael cyclization or quinine-promoted cascade stepwise [5 + 2] cycloaddition and intramolecular Michael cyclization.


Asunto(s)
Octanos , Piranos , Estereoisomerismo , Indicadores y Reactivos
7.
Mol Ther Nucleic Acids ; 29: 400-412, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035752

RESUMEN

Gene therapy would benefit from the effective editing of targeted cells with CRISPR-Cas9 tools. However, it is difficult to precisely assess the editing performance in vivo because the tissues contain many non-targeted cells, which is one of the major barriers to clinical translation. Here, in the Atoh1-GFP;Kcnq4 +/G229D mice, recapitulating a novel mutation we identified in a hereditary hearing loss pedigree, the high-efficiency editing of CRISPR-Cas9 in hair cells (34.10% on average) was precisely detected by sorting out labeled cells compared with only 1.45% efficiency in the whole cochlear tissue. After injection of the developed AAV_SaCas9-KKH_sgRNA agents, the Kcnq4 +/G229D mice showed significantly lower auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) thresholds, shorter ABR wave I latencies, higher ABR wave I amplitudes, increased number of surviving outer hair cells (OHCs), and more hyperpolarized resting membrane potentials of OHCs. These findings provide an innovative approach to accurately assess the underestimated editing efficiency of CRISPR-Cas9 in vivo and offer a promising strategy for the treatment of KCNQ4-related deafness.

8.
Polymers (Basel) ; 13(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34578089

RESUMEN

In this work, the development and application of multicomponents obtained from recycled polyethylene terephthalate (r-PET) waste and monotropic liquid crystals as anticorrosion coatings are reported. The r-PET raw material was alcoholyzed and reproduced as a thermoplastic polyester elastomer (TPEE) with different amounts (n%, n = 0, 1, 3, and 5) of 1,6-hexanediamine (HDA). Then, a fluorine-containing liquid crystal (4-cyano-3-fluorophenyl 4-ethylbenzoate (4CFE)) was incorporated into the TPEE mixture via solvent blending to modify and enhance the water resistance. The adhesion behavior of the coating on glass and iron substrates was evaluated by cross-cut tests and immersion tests in aqueous NaCl. In the corrosion resistance measurements, all of the coating samples fabricated with 10 ± 1 mm thickness were less active toward electrochemical corrosion (PEF% > 99%) than the bare iron plate, indicating that our work provided better protection against corrosion of the iron plate.

9.
ACS Appl Mater Interfaces ; 13(36): 43011-43021, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34469095

RESUMEN

The research of thermoelectric materials is of great significance to solve the energy crisis and environmental problems. In this work, a series of pure SnSe bulk crystals were prepared by melting, high-energy ball milling, and hot pressing processes. The results show that the ZT value of the prepared pure SnSe polycrystalline material is up to 2.1 at 873 K. On the one hand, due to the reduction of grain size and lattice distortion caused by long-time high-energy ball milling, the lattice thermal conductivity is significantly reduced, which is only 0.18 W K-1 m-1 at 873 K. On the other hand, high-energy ball milling leads to the increase of Sn vacancies, which improves the conductivity of SnSe polycrystalline materials. Since the whole process of ball milling was carried out in a closed ball milling tank filled with high-purity argon, no oxidation of the SnSe powder is also a guarantee to obtain pure SnSe polycrystalline materials with high ZT value.

10.
Neuroreport ; 30(11): 753-759, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31261237

RESUMEN

The δ subunit-containing GABAA receptor [GABAA(δ)R], which is exclusively situated in the extrasynaptic space, has considerable influence on emotion and behavior. Although the expression of this receptor experiences dramatic fluctuation during postnatal development, it remains unknown whether it regulates emotion in a development-dependent manner. Here, by using mice with genetic deletion of GABAA(δ)R (knockout) and their wild-type littermates, we examined the role of GABAA(δ)R in regulating anxiety-like behavior, as measured with open field test (OFT) and elevated plus maze during the transition from puberty to adulthood. We observed that for female mice, the knockout ones at puberty but not adulthood showed increased anxiety-like behavior in the OFT relative to their wild-type littermates. However, such increase was not observed in elevated plus maze. For male mice, no between-genotype differences were observed in both tests at the above two developmental stages. Our results suggest that GABAA(δ)R preferentially affects the anxiety-like behavior in OFT in a development-dependent manner, but only in female mice.


Asunto(s)
Ansiedad/fisiopatología , Receptores de GABA-A/fisiología , Caracteres Sexuales , Factores de Edad , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de GABA-A/genética
11.
Eur J Pharmacol ; 832: 67-74, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-29782860

RESUMEN

Lipopolysaccharide (LPS) is one of the many reasons that can cause myocardial injury. Our previous works have demonstrated that 14-3-3γ could protect myocardium against LPS-induced injury. Tetramethylpyrazine (TMP), an alkaloid found in Chinese herbs, exerts myocardial protection in many ways with multiple targets. We hypothesized that the cardioprotection of TMP against LPS-induced injury is attributed to upregulation of 14-3-3γ and improvement of mitochondrial function. To test the hypothesis, we investigated the effects of TMP on LPS-induced injury to cardiomyocytes by determining cell viability, LDH and caspase-3 activities, reactive oxygen species and MMP levels, mPTP openness, and apoptosis rate. The expression of 14-3-3γ and Bcl-2, and the phosphorylation of Bad (S112) were examined by Western blot. LPS-induced injury to cardiomyocytes was attenuated by TMP via upregulating expression of 14-3-3γ, and Bcl-2 on mitochondria, activating Bad (S112) phosphorylation, increasing cell viability and MMP levels, decreasing LDH and caspase-3 activity, reactive oxygen species generation, mPTP opening and apoptosis rate. However, the cardioprotection of TMP was attenuated by pAD/14-3-3γ-shRNA, an adenovirus that knocked down intracellular 14-3-3γ expression. In conclusion, the cardioprotection of TMP against LPS-induced injury was through up-regulating the expression of 14-3-3γ, promoting the translocation of Bcl-2 to mitochondria, and improving the function of mitochondria.


Asunto(s)
Proteínas 14-3-3/metabolismo , Lipopolisacáridos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Pirazinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteína Letal Asociada a bcl/metabolismo
12.
Brain Res Bull ; 137: 294-300, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29330035

RESUMEN

Emerging evidence indicates that loss of inhibitory tone in amygdala with its subsequent overactivation contributes to the development of multiple mental disorders such as anxiety disorders and post-traumatic stress disorder (PTSD). Harmine is a member of natural ß-carboline alkaloids which can readily cross the blood brain barrier and displays significant antidepressant and anxiolytic effects in rodents. However, the underlying neurobiological mechanisms are largely unknown. Here, by using whole-cell patch clamp recordings in in vitro amygdala slices, we examined the effect of harmine on glutamatergic and GABAergic transmission onto basal amygdala (BA) projection neurons (PNs). Our results showed that harmine affected neither the amplitude nor the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs) of PNs. By contrast, it markedly increased both the amplitude and frequency of the spontaneous inhibitory postsynaptic currents (sIPSCs). For mIPSCs, only an increase of their frequency but not amplitude was observed following harmine perfusion, suggesting that harmine might act through presynaptic mechanism. In parallel, a reduction of paired-pulse ratio of evoked IPSCs emerged in the presence of harmine. Furthermore, the intrinsic excitability of PNs was dramatically decreased upon harmine treatment. Together, our study suggests that harmine selectively potentiates the inhibitory but not excitatory transmission onto BA PNs, which may contribute to its antidepressant and anxiolytic influence.


Asunto(s)
Ansiolíticos/farmacología , Complejo Nuclear Basolateral/efectos de los fármacos , Harmina/farmacología , Células Piramidales/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Complejo Nuclear Basolateral/metabolismo , Ácido Glutámico/metabolismo , Masculino , Ratones Endogámicos C57BL , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
13.
Biomed Pharmacother ; 93: 788-795, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28709132

RESUMEN

6-Gingerol (6-Gin), an active constituent of Zingiber officinale, has been reported to have anti-inflammatory, anti-oxidative, anti-cancerous etc. bioactivities. However, little is known about its endothelial protective effects and the underlying mechanisms. In this study, our purpose was to investigate the protective effects of 6-Gin and its underlying mechanisms. HUVECs were exposed to high glucose (HG, 33mM glucose) for 48h, followed by 50µM 6-Gin with or without LY294002 (10µM), AKT inhibitor IV (0.5µM) or L-NAME (5mM) for another 24h. Cell viability, levels of NO, LDH and ROS were detected. In addition, the expression levels of IKK, IRS-1, PI3K, AKT, eNOS and their phosphorylated proteins were measured by western blots. Compared with the control, HUVECs were significantly impaired by HG, characterized by decreased levels of the cell viability, NO, pY458-PI3K, pS473-AKT and pS1177-eNOS while increased levels of LDH, pS176-IKK, and p-S312-IRS-1. Conversely, 6-Gin remarkably protected HUVECs against HG-induced injury in a concentration- and time-dependent manner. However, the protective effects of 6-Gin were abolished by co-treatment with LY294002, AKT inhibitor IV or L-NAME at the HG state. Collectively, 6-Gin attenuated the injury of HUVECs induced by HG through the activation of PI3K-AKT-eNOS signal pathway. The findings provide a novel potential for 6-Gin to prevent and treat the angiopathy resulting from diabetes mellitus.


Asunto(s)
Catecoles/farmacología , Células Endoteliales/efectos de los fármacos , Alcoholes Grasos/farmacología , Glucosa/metabolismo , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Supervivencia Celular/efectos de los fármacos , Cromonas/farmacología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Morfolinas/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Eur J Pharmacol ; 795: 134-142, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27940057

RESUMEN

Epigallocatechin-3-gallate (EGCG), a major component in green tea, functions as extensive bioactivities including anti-inflammation, anti-oxidation, and anti-cancer. However, little is known about its anti-adipogenesis and underlying mechanisms. The purport of this study sought to investigate effects of EGCG on 3T3-L1 preadipocyte differentiation and to explore its possible mechanisms. The 3T3-L1 cells were induced to differentiate under the condition of pro-adipogenic cocktail with or without indicated EGCG concentrations (10, 50, 100, 200µM) for 2, 4, 6 and 8 days, respectively. Also, another batch of 3T3-L1 cells was induced under the optimal EGCG concentration (100µM) with or without SC3036 (PI3K activator, 10µM) or SC79 (AKT activator, 0.5µM) for 8 days. Subsequently, the cell viability was examined by MTT assay and the cell morphology was visualized by Oil red O staining. Finally, the mRNA levels including peroxisome proliferator activated receptor γ (PPARγ) and fatty acid synthase (FAS) were detected by quantitative real time PCR, while the protein levels of PPARγ, FAS, phosphatidylinositol 3 kinase (PI3K), insulin receptor substrate1(IRS1), AKT, and p-AKT were measured by immunoblotting analysis. Our results showed that EGCG inhibited adipogenesis of 3T3-L1 preadipocyte in a concentration-dependent manner. Moreover, the inhibitory effects were reversed by SC3036 or SC79, suggesting that the inhibitory effects of EGCG are mediated by PI3K-AKT signaling to down-regulate PPARγ and FAS expression levels. The findings shed light on EGCG anti-adipogenic effects and its underlying mechanism and provide a novel preventive-therapeutic potential for obesity subjects as a compound from Chinese green tea.


Asunto(s)
Adipogénesis/efectos de los fármacos , Catequina/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Ácido Graso Sintasas/genética , PPAR gamma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Catequina/farmacología , Supervivencia Celular/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA