Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.268
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32559462

RESUMEN

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Asunto(s)
Caperuzas de ARN/genética , Infecciones por Virus ARN/genética , Proteínas Recombinantes de Fusión/genética , Regiones no Traducidas 5'/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Humanos , Virus de la Influenza A/metabolismo , Ratones , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Sistemas de Lectura Abierta/genética , Caperuzas de ARN/metabolismo , Infecciones por Virus ARN/metabolismo , Virus ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
2.
Cell ; 175(7): 1887-1901.e18, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550787

RESUMEN

In early mammalian embryos, it remains unclear how the first cell fate bias is initially triggered and amplified toward cell fate segregation. Here, we report that a long noncoding RNA, LincGET, is transiently and asymmetrically expressed in the nucleus of two- to four-cell mouse embryos. Overexpression of LincGET in one of the two-cell blastomeres biases its progeny predominantly toward the inner cell mass (ICM) fate. Mechanistically, LincGET physically binds to CARM1 and promotes the nuclear localization of CARM1, which can further increase the level of H3 methylation at Arginine 26 (H3R26me), activate ICM-specific gene expression, upregulate transposons, and increase global chromatin accessibility. Simultaneous overexpression of LincGET and depletion of Carm1 no longer biased embryonic fate, indicating that the effect of LincGET in directing ICM lineage depends on CARM1. Thus, our data identify LincGET as one of the earliest known lineage regulators to bias cell fate in mammalian 2-cell embryos.


Asunto(s)
Blastocisto/metabolismo , Blastómeros/metabolismo , Linaje de la Célula/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , ARN Largo no Codificante/biosíntesis , Animales , Blastocisto/citología , Blastómeros/citología , Femenino , Histonas/metabolismo , Metilación , Ratones , Ratones Endogámicos ICR , Proteína-Arginina N-Metiltransferasas/biosíntesis , Proteína-Arginina N-Metiltransferasas/genética , ARN Largo no Codificante/genética
3.
Nature ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038490

RESUMEN

In dynamic environments, animals make behavioral decisions based on the innate valences of sensory cues and information learnt about these cues across multiple timescales1-3. However, it remains unclear how the innate valence of a sensory stimulus affects acquisition of learnt valence information and subsequent memory dynamics. Here we show that in the Drosophila brain, interconnected short- and long-term memory units of the mushroom body jointly regulate memory via dopamine signals that encode innate and learnt sensory valences. Through time-lapse, in vivo voltage-imaging studies of neural spiking in >500 flies undergoing olfactory associative conditioning, we found that protocerebral posterior lateral 1 dopamine neurons (PPL1-DANs)4 heterogeneously and bi-directionally encode innate and learnt valences of punishment, reward, and odor cues. During learning, these valence signals regulate memory storage and extinction in mushroom body output neurons (MBONs)5. In initial conditioning bouts, PPL1-γ1pedc and PPL1-γ2α'1 neurons control short-term memory formation, which weakens inhibitory feedback from MBON-γ1pedc>α/ß to PPL1-α'2α2 and PPL1-α3. During further conditioning, this diminished feedback allows these two PPL1-DANs to encode the net innate plus learnt valence of the conditioned odor cue, which gates long-term memory formation. A computational model constrained by the fly connectome6,7 and our spiking data explains how dopamine signals mediate the circuit interactions between short- and long-term memory traces, yielding predictions that our experiments confirm. Overall, the mushroom body achieves flexible learning via the integration of innate and learnt valences within parallel learning units sharing feedback interconnections. This hybrid physiologic-anatomic mechanism may be a general means by which dopamine regulates memory dynamics in other species and brain structures, including the vertebrate basal ganglia.

4.
Mol Cell ; 81(16): 3339-3355.e8, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352206

RESUMEN

Cancer cells selectively promote translation of specific oncogenic transcripts to facilitate cancer survival and progression, but the underlying mechanisms are poorly understood. Here, we find that N7-methylguanosine (m7G) tRNA modification and its methyltransferase complex components, METTL1 and WDR4, are significantly upregulated in intrahepatic cholangiocarcinoma (ICC) and associated with poor prognosis. We further reveal the critical role of METTL1/WDR4 in promoting ICC cell survival and progression using loss- and gain-of-function assays in vitro and in vivo. Mechanistically, m7G tRNA modification selectively regulates the translation of oncogenic transcripts, including cell-cycle and epidermal growth factor receptor (EGFR) pathway genes, in m7G-tRNA-decoded codon-frequency-dependent mechanisms. Moreover, using overexpression and knockout mouse models, we demonstrate the crucial oncogenic function of Mettl1-mediated m7G tRNA modification in promoting ICC tumorigenesis and progression in vivo. Our study uncovers the important physiological function and mechanism of METTL1-mediated m7G tRNA modification in the regulation of oncogenic mRNA translation and cancer progression.


Asunto(s)
Colangiocarcinoma/genética , Proteínas de Unión al GTP/genética , Metiltransferasas/genética , Biosíntesis de Proteínas , Animales , Carcinogénesis/genética , Colangiocarcinoma/patología , Progresión de la Enfermedad , Receptores ErbB/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Ratones , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN de Transferencia/genética
5.
Cell ; 155(5): 1034-48, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24267889

RESUMEN

LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Proteoma/análisis , Ribonucleoproteínas/análisis , Secuencia de Aminoácidos , Animales , Regulación hacia Abajo , Genoma Humano , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/aislamiento & purificación , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Helicasas , Ribonucleoproteínas/aislamiento & purificación , Alineación de Secuencia , Transactivadores/química , Transactivadores/aislamiento & purificación , Transactivadores/metabolismo
6.
EMBO J ; 42(12): e112712, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37139896

RESUMEN

cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Macrófagos/metabolismo , Nucleotidiltransferasas/metabolismo , ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
7.
Nature ; 596(7873): 525-530, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433941

RESUMEN

Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.

8.
PLoS Biol ; 21(7): e3002166, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410698

RESUMEN

Birds share lands with humans at a substantial scale and affect crops. Yet, at a global scale, systematic evaluations of human-bird coexistence in croplands are scarce. Here, we compiled and used meta-analysis approaches to synthesize multiple global datasets of ecological and social dimensions to understand this complex coexistence system. Our result shows that birds usually increase woody, but not herbaceous, crop production, implying that crop loss mitigation efforts are critical for a better coexistence. We reveal that many nonlethal technical measures are more effective in reducing crop loss, e.g., using scaring devices and changing sow practices, than other available methods. Besides, we find that stakeholders from low-income countries are more likely to perceive the crop losses caused by birds and are less positive toward birds than those from high-income ones. Based on our evidence, we identified potential regional clusters, particularly in tropical areas, for implementing win-win coexistence strategies. Overall, we provide an evidence-based knowledge flow and solutions for stakeholders to integrate the conservation and management of birds in croplands.


Asunto(s)
Agricultura , Aves , Humanos , Animales , Femenino , Porcinos , Agricultura/métodos , Productos Agrícolas , Conservación de los Recursos Naturales/métodos
9.
Proc Natl Acad Sci U S A ; 120(39): e2310903120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729201

RESUMEN

Advancing new ideas of rechargeable batteries represents an important path to meeting the ever-increasing energy storage needs. Recently, we showed rechargeable sodium/chlorine (Na/Cl2) (or lithium/chlorine Li/Cl2) batteries that used a Na (or Li) metal negative electrode, a microporous amorphous carbon nanosphere (aCNS) positive electrode, and an electrolyte containing dissolved aluminum chloride and fluoride additives in thionyl chloride [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. The main battery redox reaction involved conversion between NaCl and Cl2 trapped in the carbon positive electrode, delivering a cyclable capacity of up to 1,200 mAh g-1 (based on positive electrode mass) at a ~3.5 V discharge voltage [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. Here, we identified by X-ray photoelectron spectroscopy (XPS) that upon charging a Na/Cl2 battery, chlorination of carbon in the positive electrode occurred to form carbon-chlorine (C-Cl) accompanied by molecular Cl2 infiltrating the porous aCNS, consistent with Cl2 probed by mass spectrometry. Synchrotron X-ray diffraction observed the development of graphitic ordering in the initially amorphous aCNS under battery charging when the carbon matrix was oxidized/chlorinated and infiltrated with Cl2. The C-Cl, Cl2 species and graphitic ordering were reversible upon discharge, accompanied by NaCl formation. The results revealed redox conversion between NaCl and Cl2, reversible graphitic ordering/amorphourization of carbon through battery charge/discharge, and probed trapped Cl2 in porous carbon by XPS.

10.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38453467

RESUMEN

Pain perception arises from the integration of prior expectations with sensory information. Although recent work has demonstrated that treatment expectancy effects (e.g., placebo hypoalgesia) can be explained by a Bayesian integration framework incorporating the precision level of expectations and sensory inputs, the key factor modulating this integration in stimulus expectancy-induced pain modulation remains unclear. In a stimulus expectancy paradigm combining emotion regulation in healthy male and female adults, we found that participants' voluntary reduction in anticipatory anxiety and pleasantness monotonically reduced the magnitude of pain modulation by negative and positive expectations, respectively, indicating a role of emotion. For both types of expectations, Bayesian model comparisons confirmed that an integration model using the respective emotion of expectations and sensory inputs explained stimulus expectancy effects on pain better than using their respective precision. For negative expectations, the role of anxiety is further supported by our fMRI findings that (1) functional coupling within anxiety-processing brain regions (amygdala and anterior cingulate) reflected the integration of expectations with sensory inputs and (2) anxiety appeared to impair the updating of expectations via suppressed prediction error signals in the anterior cingulate, thus perpetuating negative expectancy effects. Regarding positive expectations, their integration with sensory inputs relied on the functional coupling within brain structures processing positive emotion and inhibiting threat responding (medial orbitofrontal cortex and hippocampus). In summary, different from treatment expectancy, pain modulation by stimulus expectancy emanates from emotion-modulated integration of beliefs with sensory evidence and inadequate belief updating.


Asunto(s)
Anticipación Psicológica , Ansiedad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Ansiedad/psicología , Ansiedad/fisiopatología , Adulto , Anticipación Psicológica/fisiología , Adulto Joven , Percepción del Dolor/fisiología , Dolor/psicología , Dolor/fisiopatología , Teorema de Bayes , Emociones/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/fisiología , Placer/fisiología , Mapeo Encefálico
11.
EMBO J ; 40(2): e105499, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33241915

RESUMEN

Cilia of higher animals sense various environmental stimuli. Proper ciliary signaling requires appropriate extent of BBSome-mediated export of membrane receptors across ciliary barrier transition zone (TZ) through retrograde intraflagellar transport (IFT) machinery. How the barrier passage is controlled, however, remains unknown. Here, we show that small GTPase Rabl2 functions as a molecular switch for the outward TZ passage. Rabl2-GTP enters cilia by binding to IFT-B complex. Its GTP hydrolysis enables the outward TZ passage of the BBSome and its cargos with retrograde IFT machinery, whereas its persistent association leads to their shedding from IFT-B during the passing process and consequently ciliary retention. Rabl2 deficiency or expression of a GTP-locked mutant impairs the ciliary hedgehog signaling without interfering with ciliation and respectively results in different spectrums of mouse developmental disorders. We propose that the switch role of Rabl2 ensures proper turnover of the BBSome and ciliary membrane receptors to fine-tune cilia-dependent signaling for normal embryonic development and organismic homeostasis.


Asunto(s)
Cilios/metabolismo , Guanosina Trifosfato/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Línea Celular , Desarrollo Embrionario/fisiología , Flagelos/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Homeostasis/fisiología , Humanos , Hidrólisis , Ratones , Unión Proteica/fisiología
12.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289100

RESUMEN

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Asunto(s)
Arenaviridae , Genética Inversa , Animales , Femenino , Humanos , Arenaviridae/genética , Infecciones por Arenaviridae/virología , Arenavirus del Nuevo Mundo/genética , Chlorocebus aethiops , Fiebres Hemorrágicas Virales/virología , Fenotipo , Genética Inversa/métodos , Vacunas , Células Vero
13.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189543

RESUMEN

Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.


Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Desarrollo de Medicamentos , Exactitud de los Datos
14.
Hepatology ; 79(2): 392-408, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37409771

RESUMEN

BACKGROUND AND AIMS: The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS: We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS: A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.


Asunto(s)
Inflamasomas , Receptores de Bombesina , Humanos , Ratones , Animales , Receptores de Bombesina/metabolismo , Inflamasomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caspasa 1/metabolismo , Leucocitos Mononucleares , Péptido Liberador de Gastrina/metabolismo , Etanol , Hígado/metabolismo , Citocinas/metabolismo , Factor 1 Regulador del Interferón/metabolismo
15.
FASEB J ; 38(2): e23414, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38236371

RESUMEN

Increasing evidence has demonstrated that the expression of coil domains containing 25 (CCDC25) in various malignancies is abnormally high. However, the potential regulatory role and mechanism of CCDC25 in the development of clear cell renal cell carcinoma (ccRCC) are still unclear. In this experiment, we combined in vitro experiments such as wound healing, CCK8, and transwell assay with in vivo experiments on tumor formation in nude mice to evaluate the effect of CCDC25 on the proliferation, migration, and invasion of renal cancer cells. In addition, we also used Western blotting and qPCR to evaluate the role of CCDC25 in activating the integrin-linked kinase (ILK)-NF-κB signaling pathway. Here, we demonstrate that compared to normal tissues and cell lines, CCDC25 is overexpressed in both human ccRCC tissues and cell lines. After CCDC25 knockdown, it has obvious inhibitory effect on the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In contrast, CCDC25 overexpression promotes these effects. Additionally, we also discovered that CCDC25 interacts with ILK and coordinates the activation of the NF-κB signaling pathway downstream. Generally, our study suggests that CCDC25 plays a vital role in the development of ccRCC, which also means that it may be a potential therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Proteínas de la Membrana , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Proliferación Celular , Neoplasias Renales/genética , Ratones Desnudos , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas de la Membrana/metabolismo
16.
Cell ; 141(7): 1171-82, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20602999

RESUMEN

Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further.


Asunto(s)
Elementos Transponibles de ADN , Genoma Humano , Estudio de Asociación del Genoma Completo , Análisis de Secuencia por Matrices de Oligonucleótidos , Cromosomas Humanos X , Enzimas de Restricción del ADN/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino
17.
Nature ; 567(7749): 500-505, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30894753

RESUMEN

The quantum behaviour of electrons in materials is the foundation of modern electronics and information technology1-11, and quantum materials with topological electronic and optical properties are essential for realizing quantized electronic responses that can be used for next generation technology. Here we report the first observation of topological quantum properties of chiral crystals6,7 in the RhSi family. We find that this material class hosts a quantum phase of matter that exhibits nearly ideal topological surface properties originating from the crystals' structural chirality. Electrons on the surface of these crystals show a highly unusual helicoid fermionic structure that spirals around two high-symmetry momenta, indicating electronic topological chirality. The existence of bulk multiply degenerate band fermions is guaranteed by the crystal symmetries; however, to determine the topological invariant or charge in these chiral crystals, it is essential to identify and study the helicoid topology of the arc states. The helicoid arcs that we observe on the surface characterize the topological charges of ±2, which arise from bulk higher-spin chiral fermions. These topological conductors exhibit giant Fermi arcs of maximum length (π), which are orders of magnitude larger than those found in known chiral Weyl fermion semimetals5,8-11. Our results demonstrate an electronic topological state of matter on structurally chiral crystals featuring helicoid-arc quantum states. Such exotic multifold chiral fermion semimetal states could be used to detect a quantized photogalvanic optical response, the chiral magnetic effect and other optoelectronic phenomena predicted for this class of materials6.

18.
Nature ; 567(7747): 257-261, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814741

RESUMEN

Hepatocellular carcinoma is the third leading cause of deaths from cancer worldwide. Infection with the hepatitis B virus is one of the leading risk factors for developing hepatocellular carcinoma, particularly in East Asia1. Although surgical treatment may be effective in the early stages, the five-year overall rate of survival after developing this cancer is only 50-70%2. Here, using proteomic and phospho-proteomic profiling, we characterize 110 paired tumour and non-tumour tissues of clinical early-stage hepatocellular carcinoma related to hepatitis B virus infection. Our quantitative proteomic data highlight heterogeneity in early-stage hepatocellular carcinoma: we used this to stratify the cohort into the subtypes S-I, S-II and S-III, each of which has a different clinical outcome. S-III, which is characterized by disrupted cholesterol homeostasis, is associated with the lowest overall rate of survival and the greatest risk of a poor prognosis after first-line surgery. The knockdown of sterol O-acyltransferase 1 (SOAT1)-high expression of which is a signature specific to the S-III subtype-alters the distribution of cellular cholesterol, and effectively suppresses the proliferation and migration of hepatocellular carcinoma. Finally, on the basis of a patient-derived tumour xenograft mouse model of hepatocellular carcinoma, we found that treatment with avasimibe, an inhibitor of SOAT1, markedly reduced the size of tumours that had high levels of SOAT1 expression. The proteomic stratification of early-stage hepatocellular carcinoma presented in this study provides insight into the tumour biology of this cancer, and suggests opportunities for personalized therapies that target it.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Terapia Molecular Dirigida/tendencias , Proteómica , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Procesos de Crecimiento Celular , Movimiento Celular , Virus de la Hepatitis B/patogenicidad , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estadificación de Neoplasias , Pronóstico , Esterol O-Aciltransferasa/genética
19.
Cell Mol Life Sci ; 81(1): 196, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658440

RESUMEN

Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Telomerasa , Telómero , Telomerasa/metabolismo , Telomerasa/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Telómero/metabolismo , Acortamiento del Telómero , Línea Celular
20.
Lancet Oncol ; 25(8): 989-1002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39089305

RESUMEN

BACKGROUND: Patients with EGFR-mutated non-small-cell lung cancer (NSCLC) and MET amplification as a mechanism of resistance to first-line osimertinib have few treatment options. Here, we report the primary analysis of the phase 2 INSIGHT 2 study evaluating tepotinib, a highly selective MET inhibitor, combined with osimertinib in this population. METHODS: This open-label, phase 2 study was conducted at 179 academic centres and community clinics in 17 countries. Eligible patients were aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0 or 1 and advanced or metastatic EGFR-mutated NSCLC of any histology, with MET amplification by tissue biopsy fluorescence in-situ hybridisation (FISH; MET gene copy number of ≥5 or MET-to-CEP7 ratio of ≥2) or liquid biopsy next-generation sequencing (MET plasma gene copy number of ≥2·3), following progression on first-line osimertinib. Patients received oral tepotinib 500 mg plus oral osimertinib 80 mg once daily. The primary endpoint was independently assessed objective response in patients with MET amplification by central FISH treated with tepotinib plus osimertinib with at least 9 months of follow-up. Safety was analysed in patients who received at least one study drug dose. This study is registered with ClinicalTrials.gov, NCT03940703 (enrolment complete). FINDINGS: Between Feb 13, 2020, and Nov 4, 2022, 128 patients (74 [58%] female, 54 [42%] male) were enrolled and initiated tepotinib plus osimertinib. The primary activity analysis population included 98 patients with MET amplification confirmed by central FISH, previous first-line osimertinib and at least 9 months of follow-up (median 12·7 months [IQR 9·9-20·3]). The confirmed objective response rate was 50·0% (95% CI 39·7-60·3; 49 of 98 patients). The most common treatment-related grade 3 or worse adverse events were peripheral oedema (six [5%] of 128 patients), decreased appetite (five [4%]), prolonged electrocardiogram QT interval (five [4%]), and pneumonitis (four [3%]). Serious treatment-related adverse events were reported in 16 (13%) patients. Deaths of four (3%) patients were assessed as potentially related to either trial drug by the investigator due to pneumonitis (two [2%] patients), decreased platelet count (one [1%]), respiratory failure (one [1%]), and dyspnoea (one [1%]); one death was attributed to both pneumonitis and dyspnoea. INTERPRETATION: Tepotinib plus osimertinib showed promising activity and acceptable safety in patients with EGFR-mutated NSCLC and MET amplification as a mechanism of resistance to first-line osimertinib, suggesting a potential chemotherapy-sparing oral targeted therapy option that should be further investigated. FUNDING: Merck (CrossRef Funder ID: 10.13039/100009945).


Asunto(s)
Acrilamidas , Compuestos de Anilina , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Amplificación de Genes , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas c-met , Humanos , Acrilamidas/uso terapéutico , Femenino , Masculino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Proto-Oncogénicas c-met/genética , Persona de Mediana Edad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Anciano , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Compuestos de Anilina/uso terapéutico , Compuestos de Anilina/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Adulto , Pirimidinas/efectos adversos , Pirimidinas/uso terapéutico , Pirimidinas/administración & dosificación , Progresión de la Enfermedad , Anciano de 80 o más Años , Indoles , Piperidinas , Piridazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA