Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cancer ; 20(1): 15, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451333

RESUMEN

Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Animales , Aurora Quinasa A/metabolismo , Humanos , Neoplasias/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Especificidad por Sustrato/efectos de los fármacos , Análisis de Supervivencia
2.
Int J Cancer ; 148(12): 3071-3085, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33609405

RESUMEN

Multiple myeloma (MM), a hematological malignancy, has a poor prognosis and requires an invasive procedure. Reports have implicated miRNAs in the diagnosis, treatment and prognosis of hematological malignancies. In our study, we evaluated the expression profiles of miR-17-3p in plasma and bone marrow mononuclear cells of monoclonal gammopathy of undetermined significance (MGUS) and MM patients and healthy subjects. The results showed that the plasma and mononuclear cell expression levels of miR-17-3p in MM patients were higher than those in MGUS patients and normal controls. In addition, the expression of miR-17-3p was positively correlated with diagnostic indexes, such as marrow plasma cell abundance and serum M protein level, and positively correlated with the International Staging System stage of the disease. Receiver operating characteristic curve analysis suggested that miR-17-3p might be a diagnostic index of MM. Moreover, miR-17-3p regulated cell proliferation, apoptosis and the cell cycle through P21 in MM cell lines and promoted MM tumor growth in vivo. Furthermore, we predicted and verified LMLN as a functional downstream target gene of miR-17-3p. Negatively regulated by miR-17-3p, LMLN inhibits MM cell growth, exerting a tumor suppressive function through P21. Taken together, our data identify miR-17-3p as a promising diagnostic biomarker for MM in the clinic and unveil a new miR-17-3p-LMLN-P21 axis in MM progression.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Metaloendopeptidasas/genética , MicroARNs/genética , Mieloma Múltiple/patología , Regulación hacia Arriba , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metaloendopeptidasas/metabolismo , Ratones , Persona de Mediana Edad , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Trasplante de Neoplasias
3.
Signal Transduct Target Ther ; 9(1): 44, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38388452

RESUMEN

Protein translation is a tightly regulated cellular process that is essential for gene expression and protein synthesis. The deregulation of this process is increasingly recognized as a critical factor in the pathogenesis of various human diseases. In this review, we discuss how deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Deregulated translation leads to abnormal protein expression, disrupted cellular signaling, and perturbed cellular functions- all of which contribute to disease pathogenesis. The development of ribosome profiling techniques along with mass spectrometry-based proteomics, mRNA sequencing and single-cell approaches have opened new avenues for detecting diseases related to translation errors. Importantly, we highlight recent advances in therapies targeting translation-related disorders and their potential applications in neurodegenerative diseases, cancer, infectious diseases, and cardiovascular diseases. Moreover, the growing interest lies in targeted therapies aimed at restoring precise control over translation in diseased cells is discussed. In conclusion, this comprehensive review underscores the critical role of protein translation in disease and its potential as a therapeutic target. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, offer promising avenues for improving disease outcomes in various human diseases. Additionally, it will unlock doors to the possibility of precision medicine by offering personalized therapies and a deeper understanding of the molecular underpinnings of diseases in the future.


Asunto(s)
Fenómenos Biológicos , Neoplasias , Humanos , Ribosomas/genética , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , ARN Mensajero/genética , Biosíntesis de Proteínas/genética
4.
J Exp Clin Cancer Res ; 42(1): 97, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37088855

RESUMEN

BACKGROUND: Although molecular targets such as HER2, TP53 and PIK3CA have been widely studied in esophageal cancer, few of them were successfully applied for clinical treatment. Therefore, it is urgent to discover novel actionable targets and inhibitors. Eukaryotic translational elongation factor 2 (eEF2) is reported to be highly expressed in various cancers. However, its contribution to the maintenance and progression of cancer has not been fully clarified. METHODS: In the present study, we utilized tissue array to evaluate eEF2 protein expression and clinical significance in esophageal squamous cell carcinoma (ESCC). Next, we performed knockdown, overexpression, RNA-binding protein immunoprecipitation (RIP) sequence, and nascent protein synthesis assays to explore the molecular function of eEF2. Furthermore, we utilized compound screening, Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC) assay, cell proliferation and Patient derived xenograft (PDX) mouse model assays to discover an eEF2 inhibitor and assess its effects on ESCC growth. RESULTS: We found that eEF2 were highly expressed in ESCC and negatively associated with the prognosis of ESCC patients. Knocking down of eEF2 suppressed the cell proliferation and colony formation of ESCC. eEF2 bond with the mRNA of Topoisomerase II (TOP1) and Topoisomerase II (TOP2) and enhanced the protein biosynthesis of TOP1 and TOP2. We also identified Toosendanin was a novel inhibitor of eEF2 and Toosendanin inhibited the growth of ESCC in vitro and in vivo. CONCLUSIONS: Our findings show that Toosendanin treatment suppresses ESCC growth through targeting eEF2 and regulating downstream TOP1 and TOP2 biosynthesis. eEF2 could be supplied as a potential therapeutic target in the further clinical studies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/patología , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética
5.
Cell Rep ; 42(5): 112445, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37141098

RESUMEN

The molecular and pathogenic mechanisms of esophageal squamous cell carcinoma (ESCC) development are still unclear, which hinders the development of effective treatments. In this study, we report that DUSP4 is highly expressed in human ESCC and is negatively correlated with patient prognosis. Knockdown of DUSP4 suppresses cell proliferation and patient-derived xenograft (PDX)-derived organoid (PDXO) growth and inhibits cell-derived xenograft (CDX) development. Mechanistically, DUSP4 directly binds to heat shock protein isoform ß (HSP90ß) and promotes the ATPase activity of HSP90ß by dephosphorylating HSP90ß on T214 and Y216. These dephosphorylation sites are critical for the stability of JAK1/2-STAT3 signaling and p-STAT3 (Y705) nucleus translocation. In vivo, Dusp4 knockout in mice significantly inhibits 4-nitrochinoline-oxide-induced esophageal tumorigenesis. Moreover, DUSP4 lentivirus or treatment with HSP90ß inhibitor (NVP-BEP800) significantly impedes PDX tumor growth and inactivates the JAK1/2-STAT3 signaling pathway. These data provide insight into the role of the DUSP4-HSP90ß-JAK1/2-STAT3 axis in ESCC progression and describe a strategy for ESCC treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/fisiología , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Transducción de Señal
6.
Cell Death Differ ; 29(1): 14-27, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34262144

RESUMEN

Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related deaths. However, there are few effective therapeutic targets for CRC patients. Here, we found that CDK15 was highly expressed in human CRC and negatively correlated with patient prognosis and overall survival in tissue microarray. Knockdown of CDK15 suppressed cell proliferation and anchorage-independent growth of CRC cells and inhibited tumor growth in cell line-derived xenograft (CDX) model. Importantly, knockout of CDK15 in mice retarded AOM/DSS-induced tumorigenesis and CDK15 silencing by lentivirus significantly suppressed tumor progression in patient-derived xenograft (PDX) model. Mechanistically, CDK15 could bind PAK4 and phosphorylate PAK4 at S291 site. Phosphorylation of PAK4 at the S291 residue promoted cell proliferation and anchorage-independent growth through ß-catenin/c-Myc, MEK/ERK signaling pathway in CRC. Moreover, inhibition of PAK4 reversed the tumorigenic function of CDK15 in CRC cells and pharmacological targeting PAK4 suppressed tumor growth in PDX models. Thus, our data reveal the pivotal role of CDK15 in CRC progression and demonstrate CDK15 promotes CRC tumorigenesis by phosphorylating PAK4. Hence, the CDK15-PAK4 axis may serve as a novel therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Quinasas Ciclina-Dependientes/metabolismo , beta Catenina , Animales , Neoplasias Colorrectales/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
7.
J Exp Clin Cancer Res ; 40(1): 105, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731185

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. METHODS: TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. RESULTS: TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. CONCLUSIONS: TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


Asunto(s)
Flavonas/uso terapéutico , TYK2 Quinasa/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/patología , Flavonas/farmacología , Humanos , Ratones , Persona de Mediana Edad , Tasa de Supervivencia
8.
Oncogene ; 39(31): 5405-5419, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32572158

RESUMEN

SDCBP is an adapter protein containing two tandem PDZ domains mediating cell adhesion. The role and underlying molecular mechanism of SDCBP in ESCC remain obscure. Here, we report that SDCBP is frequently overexpressed in ESCC tissues and cells compared to normal controls and that its overexpression is correlated with late clinical stage and predicts poor prognosis in ESCC patients. Functionally, high expression of SDCBP is positively related to ESCC progression both in vitro and in vivo. Furthermore, mechanistic studies show that SDCBP activates the EGFR-PI3K-Akt signaling pathway by binding to EGFR and preventing EGFR internalization. Moreover, we provide evidence that AURKA binds to SDCBP and phosphorylates it at the Ser131 and Thr200 sites to inhibit ubiquitination-mediated SDCBP degradation. More importantly, the sites at which AURKA phosphorylates SDCBP are crucial for the EGFR signaling-mediated oncogenic function of SDCBP. Taken together, we propose that SDCBP phosphorylation by AURKA prevents SDCBP degradation and promotes ESCC tumor growth through the EGFR-PI3K-Akt signaling pathway. Our findings unveil a new AURKA-SDCBP-EGFR axis that is involved in ESCC progression and provide a promising therapeutic target for ESCC treatment in the clinic.


Asunto(s)
Receptores ErbB/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sinteninas/genética , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Transducción de Señal
9.
Oncol Lett ; 9(1): 96-102, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25435940

RESUMEN

MicroRNA (miR)-29a has been associated with carcinogenesis in humans; however, its functional significance in esophageal squamous cell carcinoma (ESCC) is yet to be determined. In the present study, the expression of miR-29a was markedly downregulated in ESCC tissue and the ESCC TE-1 cell line, compared with normal esophageal tissue and cells. Furthermore, the present study identified that the forced expression of miR-29a in TE-1 cells significantly reduced cell proliferation and migration. miR-29a overexpression did not affect the expression of Notch1, however, it did increase the gene expression levels of hairy and enhancer of split 1 (Hes1), which is the key effector of the Notch signaling pathway. Direct targeting by miR-29a resulted in the downregulation of nuclear factor 1 A (Nfia), which represses the transcriptional activity of the Hes1 promoter. Furthermore, knockdown of Nfia increased Hes1 expression and inhibited cell growth in TE-1 cells. These results indicate that a low level of miR-29a expression is involved in ESCC tumorigenesis, and exogenous expression of miR-29a may repress cancer cell growth by downregulating Nfia and activating the Notch signaling pathway.

10.
Artículo en Zh | MEDLINE | ID: mdl-26016234

RESUMEN

OBJECTIVE: To study the autophagy activity between rat bone marrow stem cells (BMSCs) neural differentiation in order to explore the mechanism involve in this process. METHODS: BMSCs were passed by 3 generation, then was induced with the revulsant 2% (DMSO) + 200 µmol/L (BHA), NSE expression was detected by immunocytochemical stain, the mRNA expression of autophagy associated genes L3B, Beclinl, Atg5, Atg7, Atg10 were detected by RT-PCR, the autophagy protein LC3B was examined by Western blot and flow cytometry analysis. RESULTS: BMSCs were passed by 3 generation, the purity of BMSCs could reach more than 90%, the morphology of cells were like fibroblasts, after the revulsant 2% DMSO + 200 µmol/L BRA induced, cells were extended long neurites, like nerve cells, positive rate of NSE staining was (83±5) %, RT-PCR results showed that the expression of autophagy associated genes LC3B, Beclinl, Atg5, Atg7 Atg0 were rised after BMSCs neural differentiation, Western blot analysis showed that the LC3B-II protein expression was increased after neural differentiation and the MFI of L3B was highten by flow cytometry. CONCLUSION: Autophagy is increased after rat BMSC neural differentiation.


Asunto(s)
Autofagia , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Animales , Células Cultivadas , Citometría de Flujo , Neuronas/citología , Ratas
11.
PLoS One ; 9(5): e97684, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24841827

RESUMEN

OBJECTIVE: To investigate the modulation of microRNAs (miRNAs) upon the neuronal differentiation of mesenchymal stem cells (MSCs) through targeting RE-1 Silencing Factor (REST), a mature neuronal gene suppressor in neuronal and un-neuronal cells. METHODS: Rat bone marrow derived-MSCs were induced into neuron-like cells (MSC-NCs) by DMSO and BHA in vitro. The expression of neuron specific enolase (NSE), microtubule-associated protein tau (Tau), REST and its target genes, including synaptosomal-associated protein 25 (SNAP25) and L1 cell adhesion molecular (L1CAM), were detected in MSCs and MSC-NCs. miRNA array analysis was conducted to screen for the upregulated miRNAs after neuronal differentiation. TargetScan was used to predict the relationship between these miRNAs and REST gene, and dual luciferase reporter assay was applied to validate it. Gain and loss of function experiments were used to study the role of miR-29a upon neuronal differentiation of MSCs. The knockdown of REST was conducted to show that miR-29a affected this process through targeting REST. RESULTS: MSCs were induced into neuron-like cells which presented neuronal cell shape and expressed NSE and Tau. The expression of REST declined and the expression of SNAP25 and L1CAM increased upon the neuronal differentiation of MSCs. Among 14 upregulated miRNAs, miR-29a was validated to target REST gene. During the neuronal differentiation of MSCs, miR-29a inhibition blocked the downregulation of REST, as well as the upregulation of SNAP25, L1CAM, NSE and Tau. REST knockdown rescued the effect of miR-29a inhibition on the expression of NSE and Tau. Meanwhile, miR-29a knockin significantly decreased the expression of REST and increased the expression of SNAP25 and L1CMA in MSCs, but did not significantly affect the expression of NSE and Tau. CONCLUSION: miR-29a regulates neurogenic markers through targeting REST in mesenchymal stem cells, which provides advances in neuronal differentiation research and stem cell therapy for neurodegenerative diseases.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , MicroARNs/metabolismo , Neuronas/fisiología , Proteínas Represoras/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Células Madre Mesenquimatosas/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Enfermedades Neurodegenerativas/terapia , Ratas , Proteínas Represoras/genética , Investigación con Células Madre , Proteína 25 Asociada a Sinaptosomas/metabolismo
12.
Artículo en Zh | MEDLINE | ID: mdl-23940956

RESUMEN

OBJECTIVE: To construct inducible lentiviral vector containing human Notch1 intracellular domain (NICD) gene and enhanced green fluorescent protein (EGFP), and to study its expression in PC12 cells. METHODS: NICD cDNA was amplified by RT-PCR from human placenta tissue. EGFP gene was amplified by PCR from pEGFP-C1. Both NICD and EGFP were cloned into pcDNA 3.1 (+) plasmid to form pcDNA3.1-Notch1-EGFP. Then the Notch1-EGFP fragment was separated and cloned into pLVX-Tight-puro to form pLVX-Notch1-EGFP. The lentivirus were packaged and harvested, which were used to infect PC12 cells. After antibody selection for 2 weeks, the PC12 cells were induced by doxycycline (Dox). The expression of Notch1-EGFP was detected by fluorescence microscope and flow cytometry. RESULTS: The recombinant inducible lentiviral vectors (pLVX-Notch1-EGFP) were success fully constructed. The EGFP positive cell percentage was over 90% in transfected PC12 cells after 500 ng/ml Dox induction for 36 h. The expression of Notch1 was posited correlated to the Dox concentration. The expression of Notch1 increased with the duration of Dox induction, which got the peak at 36 h after Dox induction. CONCLUSION: The recombinant inducible lentiviral vectors containing Notch1 and EGFP gene are successfully constructed, which provides an effective and simple method to regulate the expression of Notch1 in PC12 cells.


Asunto(s)
Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Lentivirus/genética , Receptor Notch1/genética , Animales , Humanos , Células PC12 , Plásmidos , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA