Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 23(15): A1024-9, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367678

RESUMEN

In this paper, Lu3Al5O12:Ce3+ and CaAlSiN3: Eu2+ co-doped glass are presented as color conversion materials for white light-emitting diodes (WLEDs). Through adjusting the thickness of the glass phosphors, the chromaticity and CCT of the WLEDs follows the Planckian locus well. The WLEDs show CCT ranging from ~4000K to ~7000K with high CRI ranging from 83 to 90 due to the wide emission spectrum from the proposed glass phosphors. The glass phosphors provide an effective way to achieve chromaticity-tailorable WLEDs with high color quality for indoor lighting applications.

2.
Opt Express ; 22 Suppl 3: A671-8, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24922375

RESUMEN

New broadband glass phosphors with excellent thermal stability were proposed and experimentally demonstrated for white light-emitting-diodes (WLEDs). The novel glass phosphors were realized through dispersing multiple phosphors into SiO2 based glass (SiO2-Na2O-Al2O3-CaO) at 680°C. Y3Al5O12:Ce³âº (YAG), Lu3Al5O12:Ce³âº (LuAG), and CaAlSiN3: Eu²âº (nitride) phosphor crystals were chosen respectively as the yellow, green, and red emitters of the glass phosphors. The effect of sintering temperature on inter-diffusion reduction between phosphor crystals and amorphous SiO2 in nitride-doped glass phosphors was studied and evidenced by the aid of high-resolution transmission electron microscopy (HRTEM). Broadband glass phosphors with high quantum-yield of 55.6% were thus successfully realized through the implementation of low sintering temperature. Proof-of-concept devices utilizing the novel broadband phosphors were developed to generate high-quality cool-white light with trisstimulus coordinates (x, y) = (0.358, 0.288), color-rending index (CRI) = 85, and correlated color temperature (CCT) = 3923K. The novel broadband glass phosphors with excellent thermal stability are essentially beneficial to the applications for next-generation solid-state indoor lighting, especially in the area where high power and absolute reliability are required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA