Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34475219

RESUMEN

Group A rotaviruses cause severe gastroenteritis in infants and young children worldwide, with P[II] genogroup rotaviruses (RVs) responsible for >90% of global cases. RVs have diverse host ranges in different human and animal populations determined by host histo-blood group antigen (HBGA) receptor polymorphism, but details governing diversity, host ranges, and species barriers remain elusive. In this study, crystal structures of complexes of the major P[II] genogroup P[4] and P[8] genotype RV VP8* receptor-binding domains together with Lewis epitope-containing LNDFH I glycans in combination with VP8* receptor-glycan ligand affinity measurements based on NMR titration experiments revealed the structural basis for RV genotype-specific switching between ßß and ßα HBGA receptor-binding sites that determine RV host ranges. The data support the hypothesis that P[II] RV evolution progressed from animals to humans under the selection of type 1 HBGAs guided by stepwise host synthesis of type 1 ABH and Lewis HBGAs. The results help explain disease burden, species barriers, epidemiology, and limited efficacy of current RV vaccines in developing countries. The structural data has the potential to impact the design of future vaccine strategies against RV gastroenteritis.


Asunto(s)
Antígenos de Grupos Sanguíneos/inmunología , Evolución Molecular , Rotavirus/genética , Cristalografía por Rayos X , Especificidad del Huésped/genética , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Rotavirus/química , Rotavirus/inmunología , Proteínas no Estructurales Virales/química , Vacunas Virales/inmunología
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673879

RESUMEN

Reactive astrocytes are key players in HIV-associated neurocognitive disorders (HAND), and different types of reactive astrocytes play opposing roles in the neuropathologic progression of HAND. A recent study by our group found that gp120 mediates A1 astrocytes (neurotoxicity), which secrete proinflammatory factors and promote HAND disease progression. Here, by comparing the expression of A2 astrocyte (neuroprotective) markers in the brains of gp120 tgm mice and gp120+/α7nAChR-/- mice, we found that inhibition of alpha 7 nicotinic acetylcholine receptor (α7nAChR) promotes A2 astrocyte generation. Notably, kynurenine acid (KYNA) is an antagonist of α7nAChR, and is able to promote the formation of A2 astrocytes, the secretion of neurotrophic factors, and the enhancement of glutamate uptake through blocking the activation of α7nAChR/NF-κB signaling. In addition, learning, memory and mood disorders were significantly improved in gp120 tgm mice by intraperitoneal injection of kynurenine (KYN) and probenecid (PROB). Meanwhile, the number of A2 astrocytes in the mouse brain was significantly increased and glutamate toxicity was reduced. Taken together, KYNA was able to promote A2 astrocyte production and neurotrophic factor secretion, reduce glutamate toxicity, and ameliorate gp120-induced neuropathological deficits. These findings contribute to our understanding of the role that reactive astrocytes play in the development of HAND pathology and provide new evidence for the treatment of HAND via the tryptophan pathway.


Asunto(s)
Astrocitos , Ácido Glutámico , Quinurenina , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Ratones , Quinurenina/metabolismo , Ácido Quinurénico/metabolismo , Ácido Quinurénico/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/toxicidad , Transducción de Señal/efectos de los fármacos , Ratones Noqueados , Probenecid/farmacología , Ratones Endogámicos C57BL , Masculino , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , FN-kappa B/metabolismo
3.
J Neuroinflammation ; 20(1): 87, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997969

RESUMEN

Despite extensive astrocyte activation in patients suffering from HIV-associated neurocognitive disorders (HAND), little is known about the contribution of astrocytes to HAND neuropathology. Here, we report that the robust activation of neurotoxic astrocytes (A1 astrocytes) in the CNS promotes neuron damage and cognitive deficits in HIV-1 gp120 transgenic mice. Notably, knockout of α7 nicotinic acetylcholine receptors (α7nAChR) blunted A1 astrocyte responses, ultimately facilitating neuronal and cognitive improvement in the gp120tg mice. Furthermore, we provide evidence that Kynurenic acid (KYNA), a tryptophan metabolite with α7nAChR inhibitory properties, attenuates gp120-induced A1 astrocyte formation through the blockade of α7nAChR/JAK2/STAT3 signaling activation. Meanwhile, compared with gp120tg mice, mice fed with tryptophan showed dramatic improvement in cognitive performance, which was related to the inhibition of A1 astrocyte responses. These initial and determinant findings mark a turning point in our understanding of the role of α7nAChR in gp120-mediated A1 astrocyte activation, opening up new opportunities to control neurotoxic astrocyte generation through KYNA and tryptophan administration.


Asunto(s)
Infecciones por VIH , Ácido Quinurénico , Ratones , Animales , Ácido Quinurénico/farmacología , Ácido Quinurénico/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Astrocitos/metabolismo , Triptófano/metabolismo , VIH/metabolismo , Ratones Transgénicos , Trastornos Neurocognitivos/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo
4.
Biotechnol Bioeng ; 120(4): 1026-1037, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36522292

RESUMEN

The increasing market demand for squalene requires novel biotechnological production platforms. Schizochytrium sp. is an industrial oleaginous host with a high potential for squalene production due to its abundant native acetyl-CoA pool. We first found that iron starvation led to the accumulation of 1.5 g/L of squalene by Schizochytrium sp., which was 40-fold higher than in the control. Subsequent transcriptomic and lipidomic analyses showed that the high squalene titer is due to the diversion of precursors from lipid biosynthesis and increased triglycerides (TAG) content for squalene storage. Furthermore, we constructed the engineered acetyl-CoA C-acetyltransferase (ACAT)-overexpressing strain 18S::ACAT, which produced 2.79 g/L of squalene, representing an 86% increase over the original strain. Finally, a nitrogen-rich feeding strategy was developed to further increase the squalene titer of the engineered strain, which reached 10.78 g/L in fed-batch fermentation, a remarkable 161-fold increase over the control. To our best knowledge, this is the highest squalene yield in thraustochytrids reported to date.


Asunto(s)
Ingeniería Metabólica , Escualeno , Fermentación , Acetilcoenzima A/metabolismo
5.
Plant Mol Biol ; 109(6): 703-715, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35522401

RESUMEN

Fungal endophytes establish symbiotic relationships with host plants, which results in a mutual growth benefit. However, little is known about the plant genetic response underpinning endophyte colonization. Phomopsis liquidambaris usually lives as an endophyte in a wide range of asymptomatic hosts and promotes biotic and abiotic stress resistance. In this study, we show that under low nitrogen conditions P. liquidambaris promotes rice growth in a hydroponic system, which is free of other microorganisms. In order to gain insights into the mechanisms of plant colonization by P. liquidambaris under low nitrogen conditions, we compared root and shoot transcriptome profiles of root-inoculated rice at different colonization stages. We determined that genes related to plant growth promotion, such as gibberellin and auxin related genes, were up-regulated at all developmental stages both locally and systemically. The largest group of up-regulated genes (in both roots and shoots) were related to flavonoid biosynthesis, which is involved in plant growth as well as antimicrobial compounds. Furthermore, genes encoding plant defense-related endopeptidase inhibitors were strongly up-regulated at the early stage of colonization. Together, these results provide new insights into the molecular mechanisms of plant-microbe mutualism and the promotion of plant growth by a fungal endophyte under nitrogen-deficient conditions.


Asunto(s)
Endófitos , Oryza , Ascomicetos , Endófitos/fisiología , Nitrógeno , Raíces de Plantas/genética
6.
PLoS Pathog ; 16(3): e1008386, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32208455

RESUMEN

Initial cell attachment of rotavirus (RV) to specific cell surface glycan receptors, which is the essential first step in RV infection, is mediated by the VP8* domain of the spike protein VP4. Recently, human histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors for human RV strains. RV strains in the P[4] and P[8] genotypes of the P[II] genogroup share common recognition of the Lewis b (Leb) and H type 1 antigens, however, the molecular basis of receptor recognition by the major human P[8] RVs remains unknown due to lack of experimental structural information. Here, we used nuclear magnetic resonance (NMR) spectroscopy-based titration experiments and NMR-derived high ambiguity driven docking (HADDOCK) methods to elucidate the molecular basis for P[8] VP8* recognition of the Leb (LNDFH I) and type 1 HBGAs. We also used X-ray crystallography to determine the molecular details underlying P[6] recognition of H type 1 HBGAs. Unlike P[6]/P[19] VP8*s that recognize H type 1 HBGAs in a binding surface composed of an α-helix and a ß-sheet, referred as the "ßα binding site", the P[8] and P[4] VP8*s bind Leb HBGAs in a previously undescribed pocket formed by the edges of two ß-sheets, referred to as the "ßß binding site". Importantly, the P[8] and P[4] VP8*s retain binding capability to non-Leb type 1 HBGAs using the ßα binding site. The presence of two distinct binding sites for Leb and non-Leb HBGA glycans in the P[8] and P[4] VP8* domains suggests host-pathogen co-evolution under structural and functional adaptation of RV pathogens to host glycan polymorphisms. Assessment and understanding of the precise impact of this co-evolutionary process in determining RV host ranges and cross-species RV transmission should facilitate improved RV vaccine development and prediction of future RV strain emergence and epidemics.


Asunto(s)
Proteínas de la Cápside/química , Antígenos del Grupo Sanguíneo de Lewis/química , Simulación del Acoplamiento Molecular , Rotavirus/química , Proteínas de la Cápside/metabolismo , Células HT29 , Humanos , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Rotavirus/metabolismo
7.
Plant Cell Environ ; 45(6): 1813-1828, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35274310

RESUMEN

In the soil, plant roots associated with fungi often encounter uneven distribution of nitrate (NO3- )/ammonium (NH4+ ) patches, but the mechanism underlying N form-influenced plant-fungal interactions remains limited. We inoculated Arabidopsis with a root endophyte Phomopsis liquidambaris, and evaluated the effects of P. liquidambaris on plant performance under NO3- or NH4+ nutrition. Under NO3- nutrition, P. liquidambaris inoculation promoted seedling growth, whereas under NH4+ nutrition, P. liquidambaris suppressed seedling growth. Under high NH4+ conditions, fungus-colonized roots displayed increased NH4+ accumulation and NH4+ efflux, similar to the effect of ammonium stress caused by elevated NH4+ levels. Notably, this fungus excluded NH4+ during interactions with host roots, thereby leading to increased NH4+ levels at the plant-fungal interface under high NH4+ conditions. A nitrite reductase-deficient strain that excludes NO3- but absorbs NH4+ , decreased NH4+ levels in Arabidopsis shoots and rescued plant growth and nitrogen metabolism under high NH4+ levels. Transcriptomic analysis highlighted that P. liquidambaris had altered transcriptional responses associated with plant response to inorganic N forms. Our results demonstrate that fungus-regulated NO3- /NH4+ dynamics at the plant-fungal interface alters plant response to NO3- /NH4+ nutrition. This study highlights the essential functions of root endophytes in plant adaptation to soil nitrogen nutrients.


Asunto(s)
Compuestos de Amonio , Arabidopsis , Compuestos de Amonio/metabolismo , Arabidopsis/metabolismo , Endófitos/metabolismo , Hongos , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Suelo
8.
Transpl Infect Dis ; 24(3): e13826, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35334150

RESUMEN

In preparation of a clinical trial of norovirus treatment, there were concerns raised by FDA about risk of self-storage of stool from patients infected with norovirus affecting quantitative assessments of norovirus RNA. Specifically, most home freezers are frost-free and may expose the samples to multiple rounds of freeze-thaw. Stool samples collected by the study team were stored at different lengths in a frost-free freezer and at -80°C. Quantitative PCRs of norovirus were performed on all samples using the same assay. By all measures, there was no significant change in measured viral load with home storage.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Heces , Humanos , Norovirus/genética , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Carga Viral
9.
Appl Microbiol Biotechnol ; 105(12): 4919-4930, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34125275

RESUMEN

Terpenoids represent one of the largest class of chemicals in nature, which play important roles in food and pharmaceutical fields due to diverse biological and pharmacological activities. Microorganisms are recognized as a promising source of terpenoids due to its short growth cycle and sustainability. Importantly, microalgae can fix inorganic carbon through photosynthesis for the growth of themselves and the biosynthesis of various terpenoids. Moreover, microalgae possess effective biosynthesis pathways of terpenoids, both the eukaryotic mevalonic acid (MVA) pathway and the prokaryotic methyl-D-erythritol 4-phosphate (MEP) pathway. In recent years, various genetic engineering strategies have been applied to increase target terpenoid yields, including overexpression of the rate-limited enzymes and inhibition of the competing pathways. However, since gene-editing tools are only built in some model microalgae, fermentation strategies that are easier to be operated have been widely successful in promoting the production of terpenoids, such as changing culture conditions and addition of chemical additives. In addition, an economical and effective downstream process is also an important consideration for the industrial production of terpenoids, and the solvent extraction and the supercritical fluid extraction method are the most commonly used strategies, especially in the industrial production of ß-carotene and astaxanthin from microalgae. In this review, recent advancements and novel strategies used for terpenoid production are concluded and discussed, and new insights to move the field forward are proposed. KEY POINTS: • The MEP pathway is more stoichiometrically efficient than the MVA pathway. • Advanced genetic engineering and fermentation strategies can increase terpene yield. • SFE has a higher recovery of carotenoids than solvent extraction.


Asunto(s)
Microalgas , Terpenos , Vías Biosintéticas , Carotenoides , Ingeniería Metabólica , Ácido Mevalónico
10.
Fungal Genet Biol ; 136: 103301, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31765708

RESUMEN

The endophytic fungus Phomopsis liquidambaris efficiently promotes the nitrogen metabolism and growth of host plants such as rice and peanut. However, a lack of genetic tools limits further research regarding the mechanisms of interaction between P. liquidambaris and its host plants. Herein, a CRISPR/Cas9 system for targeted gene disruption in this strain was first constructed and optimized. The knock-out efficiency increased to over 60% when the ku70 or ku80 gene (involved in nonhomologous end-joining, NHEJ) was disrupted. Furthermore, the CRISPR/Cas9 system was applied to disrupt the PmkkA gene, encoding a mitogen-activated protein kinase kinase (MAPKK) in the cell-wall integrity (CWI) MAPK pathway of the strain. The ΔPmkkA mutant strain induced higher reactive oxygen species (ROS) production, chitinase activity and glucanase activity in rice seedlings than wild-type P. liquidambaris (WT), resulting in growth inhibition and strong resistance on rice. These results suggested that the PmkkA gene is crucial during the interaction with rice and may play a role in inhibiting the immune system of host plants. The CRISPR-Cas9 system will be of great use for the study of the interaction between P. liquidambaris and its host plants.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/genética , Sistemas CRISPR-Cas , Interacciones Microbiota-Huesped , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Oryza/crecimiento & desarrollo , Oryza/microbiología , Pared Celular/metabolismo , Endófitos , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Genes Fúngicos , Autoantígeno Ku/genética , Mutación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
11.
Appl Microbiol Biotechnol ; 103(15): 6041-6059, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31227866

RESUMEN

Filamentous fungi can produce many valuable secondary metabolites; among these fungi, endophytic fungi play an ecological role in mutualistic symbiosis with plants, including promoting plant growth, disease resistance, and stress resistance. However, the biosynthesis of most secondary metabolites remains unclear, and knowledge of the interaction mechanisms between endophytes and plants is still limited, especially for some novel fungi, due to the lack of genetic manipulation tools for novel species. Herein, we review the newly discovered strategies of gene disruption, such as the CRISPR-Cas9 system, the site-specific recombination Cre/loxP system, and the I-SceI endonuclease-mediated system in filamentous fungi. Gene expression systems contain using integration of target genes into the genome, host-dependent expression cassette construction depending on the host, a host-independent, universal expression system independent of the host, and reporter-guided gene expression for filamentous fungi. Furthermore, the Newly CRISPRi, CRISPRa, and the selection markers were also discussed for gene disruption and gene expression were also discussed. These studies lay the foundation for the biosynthesis of secondary metabolites in these organisms and aid in understanding the ecological function of filamentous fungi.


Asunto(s)
Hongos/genética , Técnicas de Inactivación de Genes/métodos , Genética Microbiana/métodos , Hongos/metabolismo , Redes y Vías Metabólicas/genética , Metabolismo Secundario
12.
Appl Opt ; 58(16): 4390-4394, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31251247

RESUMEN

Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.

13.
J Virol ; 90(21): 9983-9996, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558427

RESUMEN

The P[19] genotype belongs to the P[II] genogroup of group A rotaviruses (RVs). However, unlike the other P[II] RVs, which mainly infect humans, P[19] RVs commonly infect animals (pigs), making P[19] unique for the study of RV diversity and host ranges. Through in vitro binding assays and saturation transfer difference (STD) nuclear magnetic resonance (NMR), we found that P[19] could bind mucin cores 2, 4, and 6, as well as type 1 histo-blood group antigens (HBGAs). The common sequences of these glycans serve as minimal binding units, while additional residues, such as the A, B, H, and Lewis epitopes of the type 1 HBGAs, can further define the binding outcomes and therefore likely the host ranges for P[19] RVs. This complex binding property of P[19] is shared with the other three P[II] RVs (P[4], P[6], and P[8]) in that all of them recognized the type 1 HBGA precursor, although P[4] and P[8], but not P[6], also bind to mucin cores. Moreover, while essential for P[4] and P[8] binding, the addition of the Lewis epitope blocked P[6] and P[19] binding to type 1 HBGAs. Chemical-shift NMR of P[19] VP8* identified a ligand binding interface that has shifted away from the known RV P-genotype binding sites but is conserved among all P[II] RVs and two P[I] RVs (P[10] and P[12]), suggesting an evolutionary connection among these human and animal RVs. Taken together, these data are important for hypotheses on potential mechanisms for RV diversity, host ranges, and cross-species transmission. IMPORTANCE: In this study, we found that our P[19] strain and other P[II] RVs recognize mucin cores and the type 1 HBGA precursors as the minimal functional units and that additional saccharides adjacent to these units can alter binding outcomes and thereby possibly host ranges. These data may help to explain why some P[II] RVs, such as P[6] and P[19], commonly infect animals but rarely humans, while others, such as the P[4] and P[8] RVs, mainly infect humans and are predominant over other P genotypes. Elucidation of the molecular bases for strain-specific host ranges and cross-species transmission of these human and animal RVs is important to understand RV epidemiology and disease burden, which may impact development of control and prevention strategies against RV gastroenteritis.


Asunto(s)
Polisacáridos/genética , Infecciones por Rotavirus/virología , Rotavirus/genética , Animales , Sitios de Unión/genética , Antígenos de Grupos Sanguíneos/genética , Epítopos/genética , Gastroenteritis/virología , Genotipo , Especificidad del Huésped/genética , Humanos , Mucinas/genética , Unión Proteica/genética , Porcinos , Proteínas no Estructurales Virales/genética , Acoplamiento Viral
14.
Opt Express ; 25(3): 1856-1866, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519038

RESUMEN

The propagation of decelerating Airy pulses in non-instantaneous cubic medium is investigated both theoretically and numerically. In a Debye model, at variance with the case of accelerating Airy and Gaussian pulses, a decelerating Airy pulse evolves into a single soliton for weak and general non-instantaneous response. Airy pulses can hence be used to control soliton generation by temporal shaping. The effect is critically dependent on the response time, and could be used as a way to measure the Debye type response function. For highly non-instantaneous response, we theoretically find a decelerating Airy pulse is still transformed into Airy wave packet with deceleration. The theoretical predictions are confirmed by numerical simulations.

15.
J Virol ; 89(2): 1419-27, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392226

RESUMEN

UNLABELLED: Tulane virus (TV), the prototype of the Recovirus genus in the calicivirus family, was isolated from the stools of rhesus monkeys and can be cultivated in vitro in monkey kidney cells. TV is genetically closely related to the genus Norovirus and recognizes the histo-blood group antigens (HBGAs), similarly to human noroviruses (NoVs), making it a valuable surrogate for human NoVs. However, the precise structures of HBGAs recognized by TV remain elusive. In this study, we performed binding and blocking experiments on TV with extended HBGA types and showed that, while TV binds all four types (types 1 to 4) of the B antigens, it recognizes only the A type 3 antigen among four types of A antigens tested. The requirements for HBGAs in TV replication were demonstrated by blocking of TV replication in cell culture using the A type 3/4 and B saliva samples. Similar results were also observed in oligosaccharide-based blocking assays. Importantly, the previously reported, unexplained increase in TV replication by oligosaccharide in cell-based blocking assays has been clarified, which will facilitate the application of TV as a surrogate for human NoVs. IMPORTANCE: Our understanding of the role of HBGAs in NoV infection has been significantly advanced in the past decade, but direct evidence for HBGAs as receptors for human NoVs remains lacking due to a lack of a cell culture method. TV recognizes HBGAs and can replicate in vitro, providing a valuable surrogate for human NoVs. However, TV binds to some but not all saliva samples from A-positive individuals, and an unexplained observation of synthetic oligosaccharide blocking of TV binding has been reported. These issues have been resolved in this study.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/metabolismo , Caliciviridae/fisiología , Acoplamiento Viral , Replicación Viral , Animales , Caliciviridae/aislamiento & purificación , Humanos , Macaca mulatta , Unión Proteica
16.
World J Microbiol Biotechnol ; 32(8): 134, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27339315

RESUMEN

A newly isolated Pseudomonas fragi P121 strain in a soil sample taken from the Arctic Circle is able to produce trehalose. The P121 strain was able to grow at temperatures ranging from 4 to 25 °C, had an optimum pH of 6.5, and an optimum salt concentration of 2 %. The P121 strain had a survival rate of 29.1 % after being repeatedly frozen and thawed five times, and a survival rate of 78.9 % when placed in physiological saline for 15 days at 20 °C after cold shock, which is far higher than the type strain Pseudomonas fragi ATCC 4973. The P121 strain could produce 2.89 g/L trehalose, which was 18.6 % of dry cell weight within 52 h in a 25 L fermention tank using the malt extract prepared from barley as medium at 15 °C, while only 11.8 % of dry cell weight at 20 °C. These results suggested that cold stress promoted the strain producing trehalose. It is the first reported cold-tolerant bacterium that produces trehalose, which may protect cells against the cold environment.


Asunto(s)
Pseudomonas fragi/crecimiento & desarrollo , Pseudomonas fragi/aislamiento & purificación , Trehalosa/metabolismo , Regiones Antárticas , Frío , Fermentación , Análisis de Secuencia de ADN , Microbiología del Suelo , Estrés Fisiológico
17.
J Clin Microbiol ; 52(5): 1366-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24523471

RESUMEN

Norovirus and rotavirus are the two most important causes of acute gastroenteritis in children worldwide. Both norovirus and rotavirus recognize human histo-blood group antigens (HBGAs), and multiple binding patterns for HBGAs have been reported. To explore the role of HBGAs in host susceptibility to norovirus and rotavirus, we conducted a cross-sectional study in children hospitalized with diarrhea in northern Vietnam from September 2010 through September 2012. Of 260 children with paired stool and saliva samples, 158 (61%) were classified as HBGA secretors (Lea-b+), 31 (12%) were nonsecretors (Lea+b-), and 71 (27%) were partial secretors (Lea+b+). Norovirus was detected in 50 patients (19%), with viral genotypes GII.3 (n=28) and GII.4 (n=22) being the most common. All children infected with norovirus strains of genotype GII.4 were either HBGA secretors or partial secretors. Of the 28 GII.3 cases, 12 involved HBGA secretors, 11 partial secretors, and 5 nonsecretors. A total of 85 children tested positive for rotavirus, 74 of whom were infected with genotype P[8], 5 with P[4], and 6 with P[6]; all were HBGA secretors or partial secretors. This is the first epidemiological study demonstrating in a population that HBGA phenotype is a key susceptibility factor for both norovirus and rotavirus infections in children.


Asunto(s)
Antígenos de Grupos Sanguíneos/inmunología , Infecciones por Caliciviridae/inmunología , Susceptibilidad a Enfermedades/inmunología , Norovirus/inmunología , Infecciones por Rotavirus/inmunología , Rotavirus/inmunología , Infecciones por Caliciviridae/virología , Preescolar , Estudios Transversales , Susceptibilidad a Enfermedades/virología , Heces/virología , Gastroenteritis/inmunología , Gastroenteritis/virología , Genotipo , Humanos , Lactante , Norovirus/genética , Fenotipo , Rotavirus/genética , Infecciones por Rotavirus/virología , Saliva/inmunología , Saliva/virología , Vietnam
18.
ACS Nano ; 18(8): 6673-6689, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353701

RESUMEN

The current live rotavirus (RV) vaccines show reduced effectiveness in developing countries, calling for vaccine strategies with improved efficacy and safety. We generated pseudovirus nanoparticles (PVNPs) that display multiple ectodomains of RV viral protein 4 (VP4), named S-VP4e, as a nonreplicating RV vaccine candidate. The RV spike protein VP4s that bind host receptors and facilitate viral entry are excellent targets for vaccination. In this study, we developed scalable methods to produce three S-VP4e PVNPs, each displaying the VP4e antigens from one of the three predominant P[8], P[4], and P[6] human RVs (HRVs). These PVNPs were recognized by selected neutralizing VP4-specific monoclonal antibodies, bound glycan receptors, attached to permissive HT-29 cells, and underwent cleavage by trypsin between VP8* and VP5*. 3D PVNP models were constructed to understand their structural features. A trivalent PVNP vaccine containing the three S-VP4e PVNPs elicited high and well-balanced VP4e-specific antibody titers in mice directed against the three predominant HRV P types. The resulting antisera neutralized the three HRV prototypes at high titers; greater than 4-fold higher than the neutralizing responses induced by a trivalent vaccine consisting of the S60-VP8* PVNPs. Finally, the trivalent S-VP4e PVNP vaccine provided 90-100% protection against diarrhea caused by HRV challenge. Our data supports the trivalent S-VP4e PVNPs as a promising nonreplicating HRV vaccine candidate for parenteral delivery to circumvent the suboptimal immunization issues of all present live HRV vaccines. The established PVNP-permissive cell and PVNP-glycan binding assays will be instrumental for further investigating HRV-host cell interactions and neutralizing effects of VP4-specific antibodies and antivirals.


Asunto(s)
Rotavirus , Vacunas Virales , Animales , Ratones , Humanos , Nanovacunas , Proteínas Virales/metabolismo , Anticuerpos Neutralizantes , Polisacáridos , Inmunidad , Anticuerpos Antivirales
19.
Biomolecules ; 14(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254719

RESUMEN

Human noroviruses (HuNoVs) are a major cause of acute gastroenteritis, contributing significantly to annual foodborne illness cases. However, studying these viruses has been challenging due to limitations in tissue culture techniques for over four decades. Tulane virus (TV) has emerged as a crucial surrogate for HuNoVs due to its close resemblance in amino acid composition and the availability of a robust cell culture system. Initially isolated from rhesus macaques in 2008, TV represents a novel Calicivirus belonging to the Recovirus genus. Its significance lies in sharing the same host cell receptor, histo-blood group antigen (HBGA), as HuNoVs. In this study, we introduce, through cryo-electron microscopy (cryo-EM), the structure of a specific TV variant (the 9-6-17 TV) that has notably lost its ability to bind to its receptor, B-type HBGA-a finding confirmed using an enzyme-linked immunosorbent assay (ELISA). These results offer a profound insight into the genetic modifications occurring in TV that are necessary for adaptation to cell culture environments. This research significantly contributes to advancing our understanding of the genetic changes that are pivotal to successful adaptation, shedding light on fundamental aspects of Calicivirus evolution.


Asunto(s)
Aminoácidos , Virus , Humanos , Animales , Microscopía por Crioelectrón , Macaca mulatta , Mutación
20.
Glycobiology ; 23(12): 1491-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24026239

RESUMEN

Human milk glycans inhibit binding between norovirus and its host glycan receptor; such competitive inhibition by human milk glycans is associated with a reduced risk of infection. The relationship between the presence of specific structural motifs in the human milk glycan and its ability to inhibit binding by specific norovirus strains requires facile, accurate and miniaturized-binding assays. Toward this end, a high-throughput biosensor platform was developed based on surface plasmon resonance imaging (SPRi) of glycan microarrays. The SPRi was validated, and its utility was tested, by measuring binding specificities between defined human milk glycan epitopes and the capsids of two common norovirus strains, VA387 and Norwalk. Human milk oligosaccharide (HMOS)-based neoglycoconjugates, including chemically derived neoglycoproteins and oligosaccharide-glycine derivatives, were used to represent polyvalent glycoconjugates and monovalent oligosaccharides, respectively, in human milk. SPRi binding results established that the glycan motifs that bind norovirus capsids depend upon strain; VA387 capsid interacts with two neoglycoproteins, whereas Norwalk capsid binds to a different set of HMOS motifs in the form of both polyvalent neoglycoproteins and monovalent oligosaccharides. SPRi competitive binding assays further demonstrated that specific norovirus-binding glycans are able to inhibit norovirus capsid binding to their host receptors. A polyvalent neoglycoconjugate with clustered carbohydrate moieties is required for the inhibition of VA387 capsid binding to host receptor glycans, whereas both monovalent oligosaccharides and polyvalent neoglycoconjugates are able to inhibit Norwalk capsid binding to its host receptor. Binding of HMOS and HMOS-based neoglycoconjugates to norovirus capsids depends upon the specific strain characteristics, implying that HMOS and their polyvalent derivatives are potential anti-adhesive agents for norovirus prophylaxis.


Asunto(s)
Leche/química , Norovirus/efectos de los fármacos , Polisacáridos/análisis , Polisacáridos/farmacología , Resonancia por Plasmón de Superficie , Animales , Sitios de Unión/efectos de los fármacos , Cápside/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Norovirus/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA