Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38921011

RESUMEN

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731861

RESUMEN

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Asunto(s)
Trampas Extracelulares , Lactoferrina , Moléculas de Adhesión de Célula Nerviosa , Ácidos Siálicos , Lactoferrina/farmacología , Lactoferrina/metabolismo , Humanos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Heparina de Bajo-Peso-Molecular/farmacología
3.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016390

RESUMEN

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Asunto(s)
Industria Farmacéutica , Medicamentos Herbarios Chinos , Flavonoides , Microbiología Industrial , Catálisis , Medicamentos Herbarios Chinos/síntesis química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Escherichia coli/genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Sphingomonadaceae/enzimología , Sphingomonadaceae/genética , Paenibacillus/enzimología , Paenibacillus/genética , Microbiología Industrial/métodos , Industria Farmacéutica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Flavonoides/biosíntesis , Hidrólisis
4.
J Enzyme Inhib Med Chem ; 38(1): 2248411, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615033

RESUMEN

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.


Asunto(s)
Movimiento Celular
5.
Appl Microbiol Biotechnol ; 106(9-10): 3691-3705, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35476152

RESUMEN

spt23 plays multiple roles in the thermal tolerance of budding yeast. spt23 regulates unsaturated lipid acid (ULA) content in the cell, which can then significantly affect cellular thermal tolerance. Being a Ty suppressor, spt23 can also interact with transposons (Tys) that are contributors to yeast's adaptive evolution. Nevertheless, few studies have investigated whether and how much spt23 can exert its regulatory functions through transposons. In this study, expression quantitative trait loci (eQTL) analysis was conducted with thermal-tolerant Saccharomyces cerevisiae strains, and spt23 was identified as one of the most important genes in mutants. spt23-overexpression (OE), deletion (Del), and integrative-expressed (IE) strains were constructed. Their heat tolerance, ethanol production, the expression level of key genes, and lipid acid contents in the cell membranes were measured. Furthermore, LTR (long terminal repeat)-amplicon sequencing was used to profile yeast transposon activities in the treatments. The results showed the Del type had a higher survival rate, biomass, and ethanol production, revealing negative correlations between spt23 expression levels and thermal tolerance. Total unsaturated lipid acid (TULA) contents in cell membranes were lower in the Del type, indicating its negative association with spt23 expression levels. The Del type resulted in the lower richness and higher evenness in LTR distributions, as well as higher transposon activities. The intersection of 3 gene sets and regression analysis revealed the relative weight of spt23's direct and TY-induced influence is about 4:3. These results suggested a heat tolerance model in which spt23 increases cell thermal tolerance through transcriptional regulation in addition to spt23-transposon triggered unknown responses. KEY POINTS: • spt23 is a key gene for heat tolerance, important for LA contents but not vital. • Deletion of spt23 decreases in yeast's LTR richness but not in evenness. • The relative weight of spt23's direct and TY-induced influence is about 4:3.


Asunto(s)
Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Etanol , Lípidos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499451

RESUMEN

Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa , Sialiltransferasas , Animales , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sialiltransferasas/metabolismo , Ácidos Siálicos/metabolismo , Espectroscopía de Resonancia Magnética , Aminoácidos , Mamíferos/metabolismo
7.
Molecules ; 27(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268615

RESUMEN

Resveratrol, an ingredient of traditional Chinese medicine, has beneficial effects on human health and huge potential for application in modern medicine. Polydatin is extracted from plants and then deglycosylated into resveratrol; enzymatic methods are preferred for this reaction. In this study, a ß-D-glucosidase from Sphingomonas showed high efficiency in transforming polydatin into resveratrol and was tolerant toward organic solvents. Applying this enzyme in a biphasic transformation system resulted in 95.3% conversion of 20% concentration crude polydatin to resveratrol in 4 h. We thus report a new method for high-efficiency, clean production of resveratrol.


Asunto(s)
Glucósidos , Estilbenos
8.
J Sci Food Agric ; 101(6): 2472-2482, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33034040

RESUMEN

BACKGROUND: Exoinulinase catalyzes the successive removal of individual fructose moiety from the non-reducing end of the inulin molecule, which is useful for biotechnological applications like producing fructan-based non-grain biomass energy and high-fructose syrup. In this study, an exoinulinase (KmINU) from Kluyveromyces marxianus DSM 5418 was tailored for increased catalytic activity and acidic adaptation for inulin hydrolysis processes by rational site-directed mutagenesis. RESULTS: Three mutations, S124Y, N158S and Q215V distal to the catalytic residues of KmINU were designed and heterologously expressed in Pichia pastoris GS115. Compared to the wild-type, S124Y shifted the pH-activity profile towards acidic pH values and increased the catalytic activity and catalytic efficiency by 59% and 99% to 688.4 ± 17.03 s-1 and 568.93 L mmol-1 s-1 , respectively. N158S improved the catalytic activity under acidic pH conditions, giving a maximum value of 464.06 ± 14.06 s-1 on inulin at pH 4.5. Q215V markedly improved the substrate preference for inulin over sucrose by 5.56-fold, and showed catalytic efficiencies of 208.82 and 6.88 L mmol-1 s-1 towards inulin and sucrose, respectively. Molecular modeling and computational docking indicated that structural reorientation may underlie the increased catalytic activity, acidic adaptation and substrate preference. CONCLUSIONS: The KmINU mutants may serve as industrially promising candidates for inulin hydrolysis. Protein engineering of exoinulinase here provides a successful example of the extent to which mutating non-conserved substrate recognition and binding residues distal to the active site can be used for industrial enzyme improvements. © 2020 Society of Chemical Industry.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Kluyveromyces/enzimología , Ácidos/metabolismo , Catálisis , Estabilidad de Enzimas , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Inulina/metabolismo , Cinética , Kluyveromyces/química , Kluyveromyces/genética , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas
9.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111064

RESUMEN

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Imagen por Resonancia Magnética/métodos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerizacion , Conformación Proteica , Dominios Proteicos
10.
Molecules ; 24(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561523

RESUMEN

A convenient and effective sucrose transport assay for Clostridium strains is needed. Traditional methods, such as 14C-sucrose isotope labelling, use radioactive materials and are not convenient for many laboratories. Here, a sucrose transporter from potato was introduced into Clostridium, and a fluorescence assay based on esculin was used for the analysis of sucrose transport in Clostridium strains. This showed that the heterologously expressed potato sucrose transporter is functional in Clostridium. Recombinant engineering of high-level sucrose transport would aid sucrose fermentation in Clostridium strains. The assay described herein provides an important technological platform for studying sucrose transporter function following heterologous expression in Clostridium.


Asunto(s)
Bioensayo , Clostridium/genética , Clostridium/metabolismo , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Solanum tuberosum/metabolismo , Sacarosa/metabolismo , Transporte Biológico , Fluorescencia , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo
11.
Mol Genet Genomics ; 293(1): 265-276, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29159508

RESUMEN

Mechanisms for high L-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved L-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log2fold-change ≥ 2) and 39 significantly down-regulated genes (log2fold-change ≤ - 2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that "pyruvate metabolism" was significantly different (P < 0.05) between the two strains. The split genes and the differentially expressed genes involved in the "pyruvate metabolism" pathway are probably responsible for the increased L-lactic acid production by SCT-10-10-60. The genome and transcriptome sequencing information and comparison of SCT-10-10-60 with ATCC 11443 provide insights into the anabolism of L-lactic acid and a reference for improving L-lactic acid production using genetic engineering.


Asunto(s)
Genómica , Ácido Láctico/biosíntesis , Lacticaseibacillus rhamnosus/genética , Transcriptoma/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Lacticaseibacillus rhamnosus/metabolismo , Ingeniería Metabólica , Mutación , Ácido Pirúvico/metabolismo
12.
Wei Sheng Wu Xue Bao ; 57(3): 363-74, 2017 Mar 04.
Artículo en Zh | MEDLINE | ID: mdl-29756435

RESUMEN

Objective: The aim of this study was to characterize ß-glucosidase from Citrobacter koser GXW-1 isolated from soil and to improve the enzyme by molecular modification. Mehods: A bacterial strain with ß-glucosidase activity was screened from the soil around Wuming sugar mill in Guangxi by esculin-ferric ammonium citrate selecting plate. The 16S rDNA of the strain was obtained and analyzed. By searching GenBank database, the genes encoding ß-glucosidase from the same genus Citrobacter were found. These sequences were aligned. Then, a gene encoding ß-glucosidase was amplified by PCR. The recombinant plasmid pQE-cbgl was constructed. The recombinant protein was purified with Ni-NTA. The enzyme properties of the recombinant protein CBGL were studied in detail. At last, the wild enzyme CBGL was reformed by error-prone PCR and site-directed random mutagenesis. Results: C. koser GXW-1 with ß-glucosidase activity was isolated from the soil. A gene encoding ß-glucosidase was cloned from the wild strain GXW-1. The properties of CBGL were identified. Its optimal pH and temperature were 6.0 and 45℃. Its Km and Vmax value were (11.280±1.073) mmol/L and (0.1704±0.0073) µmol/(mg·min), respectively. Its Ki values was (66.84±3.40) mmol/L. CBGL can hydrolyze α-pNPG, stevioside, daidzin and genistin. CBGL was modified by error-prone PCR and site directed random mutagenesis. A positive mutant W147F was obtained successfully. Its Vmax was 2.54 times that of the wild enzyme CBGL. Conclusion: CBGL not only can hydrolyze ß-glycosidic bond, but also can hydrolyze the α-glycosidic bond in α-pNPG. Furthermore, CBGL can hydrolyze stevioside, daidzin and genistin. These characteristics indicate that the ß-glucosidase CBGL has important applications in theoretical research and in industry.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Citrobacter/enzimología , beta-Glucosidasa/química , beta-Glucosidasa/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Citrobacter/genética , Citrobacter/aislamiento & purificación , Citrobacter/metabolismo , Diterpenos de Tipo Kaurano/metabolismo , Estabilidad de Enzimas , Glucósidos/metabolismo , Concentración de Iones de Hidrógeno , Isoflavonas/metabolismo , Cinética , Filogenia , Microbiología del Suelo , Especificidad por Sustrato , Temperatura , beta-Glucosidasa/aislamiento & purificación , beta-Glucosidasa/metabolismo
13.
Appl Microbiol Biotechnol ; 99(22): 9663-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26198882

RESUMEN

In order to produce rubusoside, enzymes with preferential specificity for the saccharide sophorose were tested for ability to produce rubusoside from stevioside. We identified BGL1, a ß-glucosidase from Streptomyces sp. GXT6, as an enzyme for rubusoside production. Out of several saccharide substrates, BGL1 showed the most affinity to sophorose. This enzyme only hydrolyzes the glucose moiety of the sophoroside at C-13 in stevioside. Production of rubusoside was determined by (1)H and (13)C nuclear magnetic resonance (NMR). Thus, rubusoside was produced from stevioside and the stevioside conversion rate was 98.2 %. The production yield of rubusoside was 78.8 % in 6 h.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Diterpenos de Tipo Kaurano/metabolismo , Glucanos/metabolismo , Glucósidos/biosíntesis , Glucósidos/metabolismo , Streptomyces/enzimología , beta-Glucosidasa/metabolismo , Espectroscopía de Resonancia Magnética
14.
Wei Sheng Wu Xue Bao ; 55(4): 467-75, 2015 Apr 04.
Artículo en Zh | MEDLINE | ID: mdl-26211321

RESUMEN

OBJECTIVE: To characterize a neutral invertase from Enterobacter cloacae GX-3. METHODS: By searching GenBank database, we found the genes encoding invertase from the same genus Enterobacter. These sequences were aligned and analyzed. Then, a gene encoding neutral invertase was amplified by PCR. The recombinant plasmid pQE-Einv was constructed. We purified the expressed protein Einv with nickel-nitrilotriacetic acid chromatography. At last, the characterics of the recombinant protein Einv were studied in detail. RESULTS: A gene encoding neutral invertase was discovered and cloned from E. cloacae GX-3. The recombinant enzyme Einv was characterized. Einv had an optimum pH of 6.5 and an optimum temperature of 40 degrees C. The results of sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and gel permeation chromatography ( GPC) showed that Einv was a homo-dimer protein. Einv retained 80% activity at sucrose concentrations up to 1170 mmol/L. But, Einv had no transglycosylation activity at high sucrose concentration. It could hydrolyze raffinose, 1-kestose, nystose, fructofuranosylnystose and stachyose. CONCLUSION: It is first reported that an invertase from Enterobacter cloacae is a beta-fructofuranosidase at neutral pH range. It only has hydrolysis activity without tranglycosylation activity. These characteristics indicate that the neutral invertase Einv has important applications in food industry.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Enterobacter cloacae/enzimología , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Enterobacter cloacae/química , Enterobacter cloacae/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Especificidad por Sustrato , Temperatura , beta-Fructofuranosidasa/aislamiento & purificación , beta-Fructofuranosidasa/metabolismo
15.
Appl Microbiol Biotechnol ; 98(16): 7069-79, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24682446

RESUMEN

In view of the important role of isoflavonoids and their related glycoconjugates in human health, there is considerable interest in their enzymatic conversion. SBGL, a novel ß-glucosidase isolated from Novosphingobium sp. GX9, was expressed in Escherichia coli and found to have high activity for hydrolysis of daidzin and genistin. SBGL showed very low K m values for daidzin and genistin, and the k cat/K m values for these substrates were 33,300 and 19,200 s(-1) mM(-1), respectively. The SBGL glucosidase could also transglycosylate the flavanol (+)-catechin at saturating acceptor concentrations, which has not previously been reported for a ß-glucosidase and is difficult to achieve synthetically.


Asunto(s)
Catequina/metabolismo , Isoflavonas/metabolismo , Sphingomonadaceae/enzimología , beta-Glucosidasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Glicosilación , Hidrólisis , Cinética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
16.
Biotechnol Appl Biochem ; 61(2): 93-100, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24033784

RESUMEN

Simultaneous improvements of thermostability and activity of a Ca-independent α-amylase from Bacillus subtilis CN7 were achieved by C-terminal truncation and his6-tag fusion. C-terminal truncation, which eliminates C-terminal 194-amino-acid residues from the intact mature α-amylase, raised the turnover number by 35% and increased the thermostability in terms of half-life at 65 °C by threefold. A his6-tag fusion at either the C- or N-terminus of truncated α-amylase further enhanced its turnover number by 59% and 37%, respectively. Molecular modeling revealed that these improvements could be attributed to structural rearrangement and reorientation of the catalytic residues.


Asunto(s)
Aminoácidos/química , Estabilidad de Enzimas , Histidina/química , Oligopéptidos/química , alfa-Amilasas/química , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Dominio Catalítico , Histidina/metabolismo , Modelos Moleculares , Oligopéptidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Temperatura , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
17.
Biotechnol Lett ; 36(1): 159-65, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24078133

RESUMEN

The three gldCDE genes from Lactobacillus diolivorans, that encode the three subunits of the glycerol dehydratase, were cloned and the proteins were co-expressed in soluble form in Escherichia coli with added sorbitol and betaine hydrochloride. The purified enzyme exists as a heterohexamer (α2ß2γ2) structure with a native molecular mass of 210 kDa. It requires coenzyme B12 for catalytic activity and is subject to suicide inactivation by glycerol during catalysis. The enzyme had maximum activity at pH 8.6 and 37 °C. The apparent K m values for coenzyme B12, 1,2-ethanediol, 1,2-propanediol, and glycerol were 1.5 µM, 10.5 mM, 1.3 mM, and 5.8 mM, respectively. Together, these results indicated that the three genes gldCDE encoding the proteins make up a coenzyme B12-dependent diol dehydratase and not a glycerol dehydratase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lactobacillus/enzimología , Propanodiol Deshidratasa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Cobamidas , Glicerol/metabolismo , Lactobacillus/genética , Oxígeno/metabolismo , Propanodiol Deshidratasa/química , Propanodiol Deshidratasa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
J Ind Microbiol Biotechnol ; 41(11): 1677-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25217846

RESUMEN

Clostridium acetobutylicum is an important organism for biobutanol production. Due to frequent exposure to bacteriophages during fermentation, industrial C. acetobutylicum strains require a strong immune response against foreign genetic invaders. In the present study, a novel CRISPR system was reported in a C. acetobutylicum GXAS18-1 strain by whole genome sequencing, and several specific characteristics of the CRISPR system were revealed as follows: (1) multiple CRISPR loci were confirmed within the whole bacterial genome, while only one cluster of CRISPR-associated genes (Cas) was found in the current strain; (2) similar leader sequences at the 5' end of the multiple CRISPR loci were identified as promoter elements by promoter prediction, suggesting that these CRISPR loci were under the control of the same transcriptional factor; (3) homology analysis indicated that the present Cas genes shared only low sequence similarity with the published Cas families; and (4) concerning gene similarity and gene cluster order, these Cas genes belonged to the csm family and originated from the euryarchaeota by horizontal gene transfer.


Asunto(s)
Clostridium acetobutylicum/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas , Genoma Bacteriano , Microbiología Industrial , Familia de Multigenes , Análisis de Secuencia de ADN
19.
ScientificWorldJournal ; 2014: 798683, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24995362

RESUMEN

Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing.


Asunto(s)
Celulosa/biosíntesis , Etanol/metabolismo , Ingeniería Genética/métodos , Lignina/biosíntesis , Saccharum/metabolismo , Trichoderma/metabolismo , Celulosa/genética , Lignina/genética , Saccharum/genética , Trichoderma/genética
20.
Prep Biochem Biotechnol ; 44(4): 342-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24320235

RESUMEN

cis,cis-Muconic acid (CCMA) is used as a platform chemical for the production of several high-value compounds. For this article, an optimization strategy has been used to optimize medium composition for CCMA production from fairly cheap benzoate by Pseudomonas sp. 1167. The effect of different concentrations of medium components on CCMA production was studied. CCMA yields obtained from Plackett-Burman design (PBD) showed wide variation (3.95-5.87 g/L), and the first-order model indicated that (NH(4))(2)SO(4) (P < 0.01) and K(2)HPO(4) · 3H(2)O (P < 0.02) were the significant components for CCMA production. Then the optimization was performed by steepest ascent design (SAD) and central composite design (CCD), and a validation experiment was conducted to verify the predicted value. The optimal medium composition was: 12 g/L sodium benzoate, 2.5 g/L sodium succinate, 0.7932 g/L (NH(4))(2)SO(4), 1.5612 g/L K(2)HPO(4) · 3H(2)O, 1.2 g/L MgSO(4) · 7H(2)O, 0.4 g/L yeast extract, 0.08 g/L FeCl(3) · 6H(2)O, and 0.08 g/L ethylenediamine tetraacetic acid (EDTA). Under these conditions, a maximum of 7.18 g/L CCMA was produced per 12 g/L benzoate with a highly efficient process within 11 hr and a molecular conversion yield of 61%. Altogether, our results provide valuable insights into nutritional supplementation of CCMA production by using statistical methods, which may benefit a cost-competitive industrial fed-batch fermentation process using a cheap substrate.


Asunto(s)
Microbiología Industrial , Pseudomonas/metabolismo , Ácido Sórbico/análogos & derivados , Benzoatos/metabolismo , Simulación por Computador , Medios de Cultivo/metabolismo , Fermentación , Microbiología Industrial/métodos , Modelos Biológicos , Modelos Estadísticos , Mutación , Pseudomonas/genética , Ácido Sórbico/análisis , Ácido Sórbico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA