Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(4): 1238-1245, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38180780

RESUMEN

The metasurface analogue of electromagnetically induced transparency (EIT) provides a chip-scale platform for achieving light delay and storage, high Q factors, and greatly enhanced optical fields. However, the literature relies on the coupling between localized and localized or localized and collective resonances, limiting the Q factor and related performance. Here, we report a novel approach for realizing collective EIT-like bands with a measured Q factor reaching 2750 in silicon metasurfaces in the near-infrared regime, exceeding the state of the art by more than 5 times. It employs the coupling between two collective resonances, the Mie electric dipole surface lattice resonance (SLR) and the out-of-plane/in-plane electric quadrupole SLR (EQ-SLR). Remarkably, the collective EIT-like resonance can have diverging Q factor and group delay due to the bound state in the continuum characteristics of the in-plane EQ-SLR. With these findings, our study opens a new route for tailoring light flow in metasurfaces.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37176996

RESUMEN

Color displays have become increasingly attractive, with dielectric optical nanoantennas demonstrating especially promising applications due to the high refractive index of the material, enabling devices to support geometry-dependent Mie resonance in the visible band. Although many structural color designs based on dielectric nanoantennas employ the method of artificial positive adjustment, the design cycle is too lengthy and the approach is non-intelligent. The commonly used phase change material Ge2Sb2Te5 (GST) is characterized by high absorption and a small contrast to the real part of the refractive index in the visible light band, thereby restricting its application in this range. The Sb2S3 phase change material is endowed with a wide band gap of 1.7 to 2 eV, demonstrating two orders of magnitude lower propagation loss compared to GST, when integrated onto a silicon waveguide, and exhibiting a maximum refractive index contrast close to 1 at 614 nm. Thus, Sb2S3 is a more suitable phase change material than GST for tuning visible light. In this paper, genetic algorithms and finite-difference time-domain (FDTD) solutions are combined and introduced as Sb2S3 phase change material to design nanoantennas. Structural color is generated in the reflection mode through the Mie resonance inside the structure, and the properties of Sb2S3 in different phase states are utilized to achieve tunability. Compared to traditional methods, genetic algorithms are superior-optimization algorithms that require low computational effort and a high population performance. Furthermore, Sb2S3 material can be laser-induced to switch the transitions of the crystallized and amorphous states, achieving reversible color. The large chromatic aberration ∆E modulation of 64.8, 28.1, and 44.1 was, respectively, achieved by the Sb2S3 phase transition in this paper. Moreover, based on the sensitivity of the structure to the incident angle, it can also be used in fields such as angle-sensitive detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA