Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(32): 22145-22150, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101883

RESUMEN

A heat-driven catch-and-release strategy for CoCl2 capture is described. It is based on the use of an immobilized neutral dicyclohexylacetamide-based receptor L supported on polystyrene (PS-L). An X-ray diffraction analysis of a single crystal of L·CoCl2 revealed an ion-pair complex comprising a hexacoordinated cobalt cation [L·Co]2+ and a tetrachlorocobaltate anion [CoCl4]2-. Temperature dependent binding was seen, as inferred from UV-vis spectroscopic studies. Fits to the van't Hoff equation yielded values of ΔH° = 12.4 kJ/mol and ΔS° = 56.0 J/K·mol for L + CoCl2, and ΔH° = 16.5 kJ/mol and ΔS° = 85.0 J/K·mol for PS-L + CoCl2 in 95% ethanol. Consequently, cobalt capture and release are mediated by heating and cooling, respectively. The material PS-L exhibits a preference for binding cobalt over manganese and nickel as inferred from Langmuir-Freundlich isotherm analyses that revealed binding constants of KLF = 88.5 M-1 for CoCl2, 52.7 M-1 for MnCl2, and 49.7 M-1 for NiCl2. In a simulated ion mixture containing equimolar CoCl2, MnCl2, and NiCl2, ICP-MS analyses served to confirm that cobalt was selectively enriched to 52 mol % (from an initial level of ca. 32 mol %) after one catch-and-release cycle and 76.6% after three cycles. Our experimental results were validated by density functional theory calculations, which also show stronger binding of Co over Mn and Ni to L.

2.
J Am Chem Soc ; 146(6): 4078-4086, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38300153

RESUMEN

Electronic waste recycling is a recognized global challenge that requires new strategies to bind and release critical materials selectively, such as cobalt present in lithium-ion batteries. To address this challenge, hierarchical 3D-printed porous polymer scaffolds bearing supramolecular receptors were prepared using vat photopolymerization and their cobalt binding profiles were examined as a function of matrix polarity. By combining high-resolution digital light processing (DLP) with polymerization-induced phase separation (PIPS), functional acrylic copolymer networks with micrometer-level precision of geometry and nanometer-level pores were generated. Covalent integration of a methacrylate-functionalized bisdicyclohexyl acetamide (BDCA-MA) receptor enabled binding and release of cobalt(II) chloride (CoCl2) via a solvent polarity switch mechanism involving a change in solvent from ethanol to water. The present structures proved reusable as shown by sustained high binding efficiency over five bind and release cycles. This platform represents a "green" and energy conscious method for future electronic waste recycling.

3.
J Am Chem Soc ; 145(26): 14387-14394, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37343135

RESUMEN

Described in this work are calix[4]pyrrole-based ion-pair receptors, cis/trans-1 and cis/trans-2, designed for the extraction of sodium hydroxide. An X-ray diffraction analysis of a single crystal of the cis-1·NaOH isomer isolated from a mixture of cis/trans-1 revealed a unique dimeric supramolecular structure. An average dimer in toluene-d8 solution was inferred on the basis of diffusion-ordered spectroscopy (DOSY). Support for the proposed stoichiometry came from density functional theory (DFT) calculations. The structural stability of the dimeric cis-1·NaOH complex in toluene solution was further confirmed by ab initio molecular dynamics (AIMD) simulation with explicit representation of solvent. Under conditions of liquid-liquid extraction (LLE), purified receptors cis- and trans-2 were both found to remove NaOH from a pH 11.01 aqueous source phase into toluene with extraction efficiencies (E%) of 50-60% when used equimolar to NaOH. However, in all cases, precipitation was observed. Complexities associated with precipitation could be avoided by immobilization of the receptors onto a chemically inert poly(styrene) resin by means of solvent impregnation. The use of solvent-impregnated resins (SIRs) eliminated precipitation in solution while retaining the extraction efficiency toward NaOH. This allowed both the pH and salinity of the alkaline source phase to be lowered.

4.
Inorg Chem ; 60(20): 15808-15817, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34618431

RESUMEN

The trend in affinity of two 1,2-hydroxypyridinonate lanthanide(III) receptors-LnIII-2,2-Li-HOPO and LnIII-3,3-Gly-HOPO (LnIII = LaIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, YbIII, and LuIII)-for phosphate across the series was investigated by luminescence spectroscopy via competition against the central europium(III) analog. Regardless of the ligand, the rare earth receptors display a steep and continuous increase in affinity for their phosphate guest across the series, with the later lanthanides displaying the highest affinity for the oxyanion. This trend mirrors that of the stability of the lanthanide receptors, which also increases significantly and continuously from LaIII to LuIII. For these two ligands, the ionic radius of a rare earth, a parameter directly linked to its Lewis acidity, correlates strongly with its affinity for anions, regardless of whether that anion is the one coordinating it (in this case the 1,2-hydroxypyridinonate ligand) or the guest targeted by the lanthanide receptor (in this case phosphate). These observations are indicative of a lack of steric hindrance for coordination of phosphate. Advantageously, increased efficacy of the lanthanide receptor comes with increased stability. The remarkably high stability of LuIII-2,2-Li-HOPO, combined with its high affinity for phosphate, makes it a particularly promising candidate for translational application to medical or environmental sequestration of phosphate since the higher stability will further reduce the risk of the rare earth leaching during anion separation. The unusually large difference in stability between lanthanide complexes (the LuIII complex of 2,2-Li-HOPO is at least 7 orders of magnitude more stable than the LaIII one) bodes well for potential applications in rare earth separation.

5.
Inorg Chem ; 59(6): 4096-4108, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32105456

RESUMEN

To evaluate the effect of ligand geometry on the coordination number, number of inner-sphere water molecules, and affinity for anions of the corresponding lanthanide complex, six tris-bidentate 1,2-hydroxypyridonate (HOPO) europium(III) complexes with different cap sizes were synthesized and characterized. Wider or more flexible ligand caps, such as in EuIII-TREN-Gly-HOPO and EuIII-3,3-Gly-HOPO, enable the formation of nine-coordinate europium(III) complexes bearing three inner-sphere water molecules. In contrast, smaller or more rigid caps, such as in EuIII-TREN-HOPO, EuIII-2,2-Li-HOPO, EuIII-3,3-Li-HOPO, and EuIII-2,2-Gly-HOPO, favor eight-coordinate europium(III) complexes that have only two inner-sphere water molecules. Notably, there is no correlation between the number of inner-sphere water molecules and the affinity of the Eu(III) complexes for phosphate. Some q = 2 (EuIII-TREN-HOPO, EuIII-3,3-Li-HOPO, and EuIII-2,2-Gly-HOPO) and some q = 3 (EuIII-TREN-Gly-HOPO) complexes have no affinity for anions, whereas one q = 2 complex (EuIII-2,2-Li-HOPO) and one q = 3 complex (EuIII-3,3-Gly-HOPO) have a high affinity for phosphate. For the latter two systems, each inner-sphere water molecule is replaced with a phosphate anion, resulting in the formation of EuLPi2 and EuLPi3 adducts, respectively.

6.
Inorg Chem ; 58(23): 16087-16099, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31738520

RESUMEN

Although recognition of hard anions by hard metal ions is primarily achieved via direct coordination, electrostatic and hydrogen-bonding interactions also play essential roles in tuning the affinity of such supramolecular receptors for their target. In the case of EuIII hydroxypyridinone-based complexes, the addition of a single charged group (-NH3+, -CO2-, or -SO3-) or neutral hydrogen-bonding moiety (-OH) peripheral to the open coordination site substantially affects the affinity of the metal receptor for phosphate in water at neutral pH. A single primary ammonium increases the first association constant for phosphate in neutral water by 2 orders of magnitude over its neutral analogue. The addition of a peripheral alcohol group also increases the affinity of the receptor but to a lesser degree (21-fold). On the other hand, negatively charged complexes bearing either a carboxylate or sulfate moiety have negligible affinity for phosphate. Interestingly, the peripheral group also influences the stoichiometry of the lanthanide receptor for phosphate. While the complex bearing a -NH3+ group binds phosphate in a 1:2 ratio, those with -OH and H (control) both form 1:3 complexes. Although the positively charged EuIII-Lys-HOPO has the highest Ka1 for phosphate, a greater increase in luminescence intensity (36-fold) is observed with the neutral EuIII-Ser-HOPO complex. Notably, whereas the affinity of the EuIII complexes for phosphate is substantially influenced by the presence of a single charged group or hydrogen-bond donor, their selectivity for phosphate over competing anions remains unaffected by the addition of the peripheral groups.

7.
JACS Au ; 2(7): 1604-1609, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35911450

RESUMEN

Two iron(III)-based molecular receptors employing 1,2-hydroxypyridinone ligands were developed for phosphate recognition and fluorescence sensing via indicator displacement assay (IDA). The tetra- and pentadentate ligands enable anion recognition by the iron(III) center via its remaining one or two open coordination sites. Weak protective coordination of fluorescein at those sites prevents the formation of µ-oxo dimers in aerated solutions. Its rapid and selective displacement by inorganic phosphate results in a 20-fold increase in the fluorescence of the indicator. Both receptors exhibit high affinity for inorganic phosphate and high selectivity over common competing anions, including halides, acetate, carbonate, and, remarkably, pyrophosphate as well as arsenate. Coordination of phosphate to the iron(III) center was confirmed by ATR-IR and 31P NMR spectroscopy.

8.
Chem Commun (Camb) ; 54(66): 9210-9213, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30066012

RESUMEN

A luminescent europium probe that responds to cyanide directly in water with a large nine-fold turn-on of the EuIII centered time-gated luminescence is presented. Unlike other CN- probes reported, the mechanism of action of EuIII-Lys-HOPO does not rely on reaction of CN- with the probe, but on direct coordination of CN- to the EuIII ion concomitant with displacement of three inner-sphere water molecules. This unusual coordination of CN- with a lanthanide ion in aqueous solution was confirmed by luminescence lifetime measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA