Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur Phys J A Hadron Nucl ; 58(10): 202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312005

RESUMEN

The absolute atomic mass of 208 Pb has been determined with a fractional uncertainty of 7 × 10 - 11 by measuring the cyclotron-frequency ratio R of 208 Pb 41 + to 132 Xe 26 + with the high-precision Penning-trap mass spectrometer Pentatrap and computing the binding energies E Pb and E Xe of the missing 41 and 26 atomic electrons, respectively, with the ab initio fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method. R has been measured with a relative precision of 9 × 10 - 12 . E Pb and E Xe have been computed with an uncertainty of 9.1 eV and 2.1 eV, respectively, yielding 207.976 650 571 ( 14 )  u ( u = 9.314 941 024 2 ( 28 ) × 10 8  eV/c 2 ) for the 208 Pb neutral atomic mass. This result agrees within 1.2 σ with that from the Atomic-Mass Evaluation (AME) 2020, while improving the precision by almost two orders of magnitude. The new mass value directly improves the mass precision of 14 nuclides in the region of Z = 81-84 and is the most precise mass value with A > 200 . Thus, the measurement establishes a new region of reference mass values which can be used e.g. for precision mass determination of transuranium nuclides, including the superheavies.

2.
Mol Biol Rep ; 41(3): 1201-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24449361

RESUMEN

With the premium bull plays a growing important role in cattle industry, semen detection technology based on individual identification and phylogenetic relationship is paid more and more attention. In order to lay the foundation for the establishment of the China Holstein bull identification method, this research takes 20 Chinese Holstein dairy bull's blood and their corresponding semen, and then extracts the DNA both from the blood and semen, analysis the genetic polymorphisms of 10 microsatellite loci (TGLA227, INRA23, TGLA122, BM2113, SPS115, ETH3, ETH225, MCM158, MAF45 and UMN0108) by microsatellite marker, discuss the feasibility of this method used to individual identification. The results showed that Chinese Holstein dairy bull genetic diversity in the ten microsatellite loci were both high, and the average polymorphic information content of TGLA227, which highest, is 0.8162, ETH225 has the lowest, which is 0.6224. Use STR loci to identify the bull's semen, the cumulative individual identification capacity is 99.99%, which indication that 10 STR loci can be used to the frozen semen quality test and cows individual identification.


Asunto(s)
Repeticiones de Microsatélite/genética , Polimorfismo Genético , Preservación de Semen , Sistemas de Identificación Animal , Animales , Bovinos , China
3.
J Hazard Mater ; 474: 134830, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850930

RESUMEN

Biogas slurry, an inevitable outcome of anaerobic digestion (AD), is a treatment burden for urban environmental management. In this study, two kinds of biogas slurry (slurry J and slurry C), collected from the AD plants in Japan and China, were treated using novel TiZrO4 @Cu and TiZrO4 @Cu@SiO2 multilayered hollow spheres containing Cu sub-nanoclusters as the catalyst. The results showed that the chemical oxygen demand (COD) was removed by 63 % for slurry J and 44 % for slurry C after 5 h. The Cu sub-nanoclusters acted as co-catalysts and active centers, facilitating rapid electron transfer to oxygen molecules and forming highly reactive •O2- and •OH species (Use slurry J as the based solution). These free radicals cleaved the interconnecting bonds between benzene rings, disintegrated the ring structure, formed intermediate compounds such as n-hexylic acid, and ultimately mineralized organic pollutants in biogas slurry into CO2 and H2O. At the same time, TiZrO4 @Cu@SiO2 had excellent stability due to the protection of the SiO2 shell and reduced threefold Cu leaching than TiZrO4 @Cu. The COD removal rate was always 60 % in six cycles in the slurry J. The new catalyst ensured the high performance of catalytic air oxidation at low temperatures, which has significant potential as an environmentally friendly and energy-saving method for organic wastewater treatment.

4.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961175

RESUMEN

Injured nervous systems are often incapable of self-repairing, resulting in permanent loss of function and disability. To restore function, a severed axon must not only regenerate, but must also reform synapses with target cells. Together, these processes beget functional axon regeneration. Progress has been made towards a mechanistic understanding of axon regeneration. However, the molecular mechanisms that determine whether and how synapses are formed by a regenerated motor axon are not well understood. Using a combination of in vivo laser axotomy, genetics, and high-resolution imaging, we find that poly (ADP-ribose) polymerases (PARPs) inhibit synapse reformation in regenerating axons. As a result, regenerated parp(-) axons regain more function than regenerated wild-type axons, even though both have reached their target cells. We find that PARPs regulate both axon regeneration and synapse reformation in coordination with proteolytic calpain CLP-4. These results indicate approaches to functionally repair the injured nervous system must specifically target synapse reformation, in addition to other components of the injury response.

5.
bioRxiv ; 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37034579

RESUMEN

Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neuron classes in the circuits that generate behavior have a remarkable capacity for flexibility, as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of highly coordinated behaviors remains unknown. Here we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg-laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg-laying and locomotion while also biasing the animals towards low-speed dwelling behavior over longer timescales. The acute effects of HSN on egg-laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal projections. The long-lasting effects on dwelling are mediated by HSN release of serotonin that is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal for the first time that neurons can borrow serotonin from one another to control behavior.

6.
Int J Biol Macromol ; 236: 123946, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889617

RESUMEN

Natural cotton fibers have attached considerable attention due to their excellent wearing comfort, breathability and warmth. However, it remains a challenge to devise a scalable and facile strategy to retrofit natural cotton fibers. Here, the cotton fiber surface was oxidized by sodium periodate with a mist process, then [2-(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) was co-polymerized with hydroxyethyl acrylate (HA) to obtain an antibacterial cationic polymer (DMC-co-HA). The self-synthesized polymer was covalently grafted onto the aldehyde-functionalized cotton fibers via an acetal reaction between hydroxyl groups of the polymer and aldehyde groups of the oxidized cotton surface. Finally, the resulted Janus functionalized cotton fabric (JanCF) revealed robust and persistent antimicrobial activity. The antibacterial test showed that when the molar ratio of DMC/HA was 50: 1, JanCF possessed the best BR (bacterial reduction) values of 100 % against Escherichia coli and Staphylococcus aureus. Furthermore, the BR values could be maintained over 95 % even after the durability test. In addition, JanCF exhibited excellent antifungal activity against Candida albicans. The cytotoxicity assessment confirmed that JanCF exhibited a reliable safety effect on human skin. Particularly, the intrinsic outstanding characteristics (strength, flexibility, etc.) of the cotton fabric were not considerably deteriorated compared to the control samples.


Asunto(s)
Fibra de Algodón , Textiles , Humanos , Polímeros , Antibacterianos/farmacología , Escherichia coli
7.
Curr Biol ; 33(20): 4430-4445.e6, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37769660

RESUMEN

Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Neuronas Motoras/fisiología , Serotonina/fisiología , Oviposición/fisiología , Neuronas Serotoninérgicas
8.
EPMA J ; 14(4): 713-726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094581

RESUMEN

Background: Population aging is a global public health issue involving increased prevalence of age-related diseases, and concomitant burden on medical resources and the economy. Ninety-two diseases have been identified as age-related, accounting for 51.3% of the global adult disease burden. The economic cost per capita for older people over 60 years is 10 times that of the younger population. From the aspects of predictive, preventive, and personalized medicine (PPPM), developing a risk-prediction model can help identify individuals at high risk for all-cause mortality and provide an opportunity for targeted prevention through personalized intervention at an early stage. However, there is still a lack of predictive models to help community-dwelling older adults do well in healthcare. Objectives: This study aims to develop an accurate 1-, 3-, 5-, and 8-year all-cause mortality risk-prediction model by using clinical multidimensional variables, and investigate risk factors for 1-, 3-, 5-, and 8-year all-cause mortality in community-dwelling older adults to guide primary prevention. Methods: This is a two-center cohort study. Inclusion criteria: (1) community-dwelling adult, (2) resided in the districts of Chaonan or Haojiang for more than 6 months in the past 12 months, and (3) completed a health examination. Exclusion criteria: (1) age less than 60 years, (2) more than 30 incomplete variables, (3) no signed informed consent. The primary outcome of the study was all-cause mortality obtained from face-to-face interviews, telephone interviews, and the medical death database from 2012 to 2021. Finally, we enrolled 5085 community-dwelling adults, 60 years and older, who underwent routine health screening in the Chaonan and Haojiang districts, southern China, from 2012 to 2021. Of them, 3091 participants from Chaonan were recruited as the primary training and internal validation study cohort, while 1994 participants from Haojiang were recruited as the external validation cohort. A total of 95 clinical multidimensional variables, including demographics, lifestyle behaviors, symptoms, medical history, family history, physical examination, laboratory tests, and electrocardiogram (ECG) data were collected to identify candidate risk factors and characteristics. Risk factors were identified using least absolute shrinkage and selection operator (LASSO) models and multivariable Cox proportional hazards regression analysis. A nomogram predictive model for 1-, 3-, 5- and 8-year all-cause mortality was constructed. The accuracy and calibration of the nomogram prediction model were assessed using the concordance index (C-index), integrated Brier score (IBS), receiver operating characteristic (ROC), and calibration curves. The clinical validity of the model was assessed using decision curve analysis (DCA). Results: Nine independent risk factors for 1-, 3-, 5-, and 8-year all-cause mortality were identified, including increased age, male, alcohol status, higher daily liquor consumption, history of cancer, elevated fasting glucose, lower hemoglobin, higher heart rate, and the occurrence of heart block. The acquisition of risk factor criteria is low cost, easily obtained, convenient for clinical application, and provides new insights and targets for the development of personalized prevention and interventions for high-risk individuals. The areas under the curve (AUC) of the nomogram model were 0.767, 0.776, and 0.806, and the C-indexes were 0.765, 0.775, and 0.797, in the training, internal validation, and external validation sets, respectively. The IBS was less than 0.25, which indicates good calibration. Calibration and decision curves showed that the predicted probabilities were in good agreement with the actual probabilities and had good clinical predictive value for PPPM. Conclusion: The personalized risk prediction model can identify individuals at high risk of all-cause mortality, help offer primary care to prevent all-cause mortality, and provide personalized medical treatment for these high-risk individuals from the PPPM perspective. Strict control of daily liquor consumption, lowering fasting glucose, raising hemoglobin, controlling heart rate, and treatment of heart block could be beneficial for improving survival in elderly populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00342-4.

9.
Materials (Basel) ; 14(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477784

RESUMEN

A new material model of magnesium alloys, combining both Hill'48 yield function and Cazacu'06 yield function, was developed and programmed into LS-DYNA using user subroutine, in which both slip dominant and twinning/untwinning dominant hardening phenomena were included. First, a cyclic load test was performed, and its finite element analysis was carried out to verify the new material model. Then, the deformation behaviors of the magnesium crash box subjected to the compressive impact loading were investigated using the developed material model. Compared with the experimental results, the new material model accurately predicted the deformation characteristics of magnesium alloy parts. Additionally, the effect of the thickness distribution, initial deflection and contact friction coefficient in simulation models on deformation behaviors were investigated using this validated material model.

10.
Rev Sci Instrum ; 92(10): 103201, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717400

RESUMEN

The possibility of applying active feedback to a single ion in a Penning trap using a fully digital system is demonstrated. Previously realized feedback systems rely on analog circuits that are susceptible to environmental fluctuations and long term drifts, as well as being limited to the specific task they were designed for. The presented system is implemented using a field-programmable gate array (FPGA)-based platform (STEMlab), offering greater flexibility, higher temporal stability, and the possibility for highly dynamic variation of feedback parameters. The system's capabilities were demonstrated by applying feedback to the ion detection system primarily consisting of a resonant circuit. This allowed shifts in its resonance frequency of up to several kHz and free modification of its quality factor within two orders of magnitude, which reduces the temperature of a single ion by a factor of 6. Furthermore, a phase-sensitive detection technique for the axial ion oscillation was implemented, which reduces the current measurement time by two orders of magnitude, while simultaneously eliminating model-related systematic uncertainties. The use of FPGA technology allowed the implementation of a fully-featured data acquisition system, making it possible to realize feedback techniques that require constant monitoring of the ion signal. This was successfully used to implement a single-ion self-excited oscillator.

11.
IEEE Trans Vis Comput Graph ; 26(3): 1502-1517, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30295624

RESUMEN

We introduce a framework for simulating a variety of nontrivial, socially motivated behaviors that underlie the orderly passage of pedestrians through doorways, especially the common courtesy of opening and holding doors open for others, an important etiquette that has been overlooked in the literature on autonomous multi-human animation. Emulating such social activity requires serious attention to the interplay of visual perception, navigation in constrained doorway environments, manipulation of a variety of door types, and high-level decision making based on social considerations. To tackle this complex human simulation problem, we take an artificial life approach to modeling autonomous pedestrians, proposing a layered architecture comprising mental, behavioral, and motor layers. The behavioral layer couples two stages: (1) a decentralized, agent-based strategy for dynamically determining the well-mannered ordering of pedestrians around doorways, and (2) a state-based model that directs and coordinates a pedestrian's interactions with the door. The mental layer is a Bayesian network decision model that dynamically selects appropriate door-holding behaviors by considering both internal and external social factors pertinent to pedestrians interacting with one another in and around doorways. Our framework addresses the various door types in common use and supports a variety of doorway etiquette scenarios with efficient, real-time performance.


Asunto(s)
Peatones , Interacción Social , Navegación Espacial , Realidad Virtual , Teorema de Bayes , Femenino , Humanos , Masculino , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA