Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(10): 1268-1279, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556885

RESUMEN

Metabolic inflammation is closely linked to obesity, and is implicated in the pathogenesis of metabolic diseases. FTO harbors the strongest genetic association with polygenic obesity, and IRX3 mediates the effects of FTO on body weight. However, in what cells and how IRX3 carries out this control are poorly understood. Here we report that macrophage IRX3 promotes metabolic inflammation to accelerate the development of obesity and type 2 diabetes. Mice with myeloid-specific deletion of Irx3 were protected against diet-induced obesity and metabolic diseases via increasing adaptive thermogenesis. Mechanistically, macrophage IRX3 promoted proinflammatory cytokine transcription and thus repressed adipocyte adrenergic signaling, thereby inhibiting lipolysis and thermogenesis. JNK1/2 phosphorylated IRX3, leading to its dimerization and nuclear translocation for transcription. Further, lipopolysaccharide stimulation stabilized IRX3 by inhibiting its ubiquitination, which amplified the transcriptional capacity of IRX3. Together, our findings identify a new player, macrophage IRX3, in the control of body weight and metabolic inflammation, implicating IRX3 as a therapeutic target.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/metabolismo , Adulto , Animales , Peso Corporal/fisiología , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Dieta/métodos , Células HEK293 , Humanos , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Células RAW 264.7 , Células THP-1 , Termogénesis/fisiología , Transcripción Genética/fisiología , Adulto Joven
2.
Immunity ; 57(3): 513-527.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38262419

RESUMEN

Accumulation of senescent cells in organs and tissues is a hallmark of aging and known to contribute to age-related diseases. Although aging-associated immune dysfunction, or immunosenescence, is known to contribute to this process, the underlying mechanism remains elusive. Here, we report that type 2 cytokine signaling deficiency accelerated aging and, conversely, that the interleukin-4 (IL-4)-STAT6 pathway protected macrophages from senescence. Mechanistically, activated STAT6 promoted the expression of genes involved in DNA repair both via homologous recombination and Fanconi anemia pathways. Conversely, STAT6 deficiency induced release of nuclear DNA into the cytoplasm to promote tissue inflammation and organismal aging. Importantly, we demonstrate that IL-4 treatment prevented macrophage senescence and improved the health span of aged mice to an extent comparable to senolytic treatment, with further additive effects when combined. Together, our findings support that type 2 cytokine signaling protects macrophages from immunosenescence and thus hold therapeutic potential for improving healthy aging.


Asunto(s)
Senescencia Celular , Interleucina-4 , Animales , Ratones , Interleucina-4/metabolismo , Envejecimiento/genética , Macrófagos , Inflamación
3.
Cell ; 175(1): 186-199.e19, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220457

RESUMEN

Mutations or aberrant upregulation of EZH2 occur frequently in human cancers, yet clinical benefits of EZH2 inhibitor (EZH2i) remain unsatisfactory and limited to certain hematological malignancies. We profile global posttranslational histone modification changes across a large panel of cancer cell lines with various sensitivities to EZH2i. We report here oncogenic transcriptional reprogramming mediated by MLL1's interaction with the p300/CBP complex, which directs H3K27me loss to reciprocal H3K27ac gain and restricts EZH2i response. Concurrent inhibition of H3K27me and H3K27ac results in transcriptional repression and MAPK pathway dependency in cancer subsets. In preclinical models encompassing a broad spectrum of EZH2-aberrant solid tumors, a combination of EZH2 and BRD4 inhibitors, or a triple-combination including MAPK inhibition display robust efficacy with very tolerable toxicity. Our results suggest an attractive precision treatment strategy for EZH2-aberrant tumors on the basis of tumor-intrinsic MLL1 expression and concurrent inhibition of epigenetic crosstalk and feedback MAPK activation.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Animales , Carcinogénesis/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Código de Histonas/efectos de los fármacos , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/fisiología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Factores de Transcripción p300-CBP/fisiología
4.
Mol Cell ; 71(1): 142-154.e6, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008318

RESUMEN

Nitric oxide (NO) regulates diverse cellular signaling through S-nitrosylation of specific Cys residues of target proteins. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by GSNO reductase (GSNOR), a highly conserved master regulator of NO signaling. However, little is known about how the activity of GSNOR is regulated. Here, we show that S-nitrosylation induces selective autophagy of Arabidopsis GSNOR1 during hypoxia responses. S-nitrosylation of GSNOR1 at Cys-10 induces conformational changes, exposing its AUTOPHAGY-RELATED8 (ATG8)-interacting motif (AIM) accessible by autophagy machinery. Upon binding by ATG8, GSNOR1 is recruited into the autophagosome and degraded in an AIM-dependent manner. Physiologically, the S-nitrosylation-induced selective autophagy of GSNOR1 is relevant to hypoxia responses. Our discovery reveals a unique mechanism by which S-nitrosylation mediates selective autophagy of GSNOR1, thereby establishing a molecular link between NO signaling and autophagy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Autofagia , Glutatión Reductasa/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Hipoxia de la Célula , Glutatión Reductasa/genética
5.
EMBO Rep ; 24(12): e57440, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37885348

RESUMEN

Embryogenesis is highly dependent on maternally loaded materials, particularly those used for energy production. Different environmental conditions and genetic backgrounds shape embryogenesis. The robustness of embryogenesis in response to extrinsic and intrinsic changes remains incompletely understood. By analyzing the levels of two major nutrients, glycogen and neutral lipids, we discovered stage-dependent usage of these two nutrients along with mitochondrial morphology changes during Caenorhabditis elegans embryogenesis. ATGL, the rate-limiting lipase in cellular lipolysis, is expressed and required in the hypodermis to regulate mitochondrial function and support embryogenesis. The embryonic lethality of atgl-1 mutants can be suppressed by reducing sinh-1/age-1-akt signaling, likely through modulating glucose metabolism to maintain sustainable glucose consumption. The embryonic lethality of atgl-1(xd314) is also affected by parental nutrition. Parental glucose and oleic acid supplements promote glycogen storage in atgl-1(xd314) embryos to compensate for the impaired lipolysis. The rescue by parental vitamin B12 supplement is likely through enhancing mitochondrial function in atgl-1 mutants. These findings reveal that metabolic plasticity contributes to the robustness of C. elegans embryogenesis.


Asunto(s)
Caenorhabditis elegans , Lipólisis , Animales , Caenorhabditis elegans/metabolismo , Lipólisis/genética , Lipasa/genética , Glucosa/metabolismo , Glucógeno/metabolismo
6.
Small ; 20(4): e2305462, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715105

RESUMEN

Substituting the low-value oxygen evolution reaction (OER) with thermodynamically more favored organic oxidation such as furfural oxidation reaction (FOR) is regarded as a perspective approach to decrease energy cost of hydrogen evolution from water splitting. However, the kinetic of FOR can be even more sluggish than OER under large current density. In this work, a strategy is proposed to accelerate FOR by enhancing the adsorption of oxygenates on active sites. Over the prepared NiMoP/NF anode, only 1.46 V versus RHE is required in furfural solution to achieve 500 mA cm-2 , significantly better than the OER activity over commercial RuO2 /NF under the same current density (1.57 V vs RHE).

7.
EMBO Rep ; 23(3): e52669, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35132760

RESUMEN

The size of lipid droplets varies greatly in vivo and is determined by both intrinsic and extrinsic factors. From an RNAi screen in Drosophila, we found that knocking down subunits of COP9 signalosome (CSN) results in enlarged lipid droplets under high-fat, but not normal, conditions. We identified CG2064, a retinol dehydrogenase (RDH) homolog, as the proteasomal degradation target of CSN in regulating lipid droplet size. RDH/CG2064 interacts with the lipid droplet-resident protein Plin2 and the RDH/CG2064-Plin2 axis acts to reduce the overall level and lipid droplet localization of Bmm/ATGL lipase. This axis is important for larval survival under prolonged starvation. Thus, we discovered an RDH-Plin2 axis modulates lipid droplet size.


Asunto(s)
Drosophila , Lipasa , Gotas Lipídicas , Perilipina-2 , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Lipasa/genética , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Perilipina-2/metabolismo
8.
Int J Mol Sci ; 25(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39337460

RESUMEN

Observational studies indicate that variations in peripheral blood mononuclear cell (PBMC) subsets are associated with an increased risk of pulmonary tuberculosis (PTB) and coronavirus disease 2019 (COVID-19), but causal validation is lacking. Here, we combined single-cell expression quantitative trait locus (sc-eQTL) and two-sample mendelian randomization (MR) analyses to elucidate the causal relationship between PBMC subsets and the occurrence of PTB and COVID-19 and verified by RT-qPCR. We observed an increase in the CD4+ Effective Memory T Cell (CD4+ TEM) cluster in both PTB and COVID-19 patients according to the single-cell transcriptional landscape of PBMC. Through MR analysis using an inverse variance weighted (IVW) method, we found strong evidence of positive correlations between CD4+ TEM cell markers (GBP2, TRAV1-2, and ODF2L) and PTB, and between markers (LAG3 and SLFN5) and COVID-19, especially highlighted by lead eQTL-SNPs of GBP2 (rs2256752, p = 4.76321 × 10-15) and LAG3 (rs67706382, p = 6.16× 10-16). Similar results were observed in validation sets, and no pleiotropy was detected in sensitivity analyses including weighted median (WM), MR-Egger, MR-pleiotropy residual sum and outlier, and leave-one-out analyses (all p > 0.05). We visualized the colocalization of marker-eQTLs and markers of PTB and COVID-19 genome-wide association study (GWAS) associations. Based on CellChat analyses, monocytes communicated predominantly with CD4+ TEM cells positively expressing PTB markers (GBP2, TRAV1-2, and ODF2L) and COVID-19 markers (LAG3 and SLFN5) in both PTB and COVID-19. Our data suggest a causal effect between two key CD4+ TEM cell markers (GBP2 and LAG3) and the risk for PTB and COVID-19 infection. Our findings provide novel insights into the biological mechanism for PTB and COVID-19 infection, but future single-cell studies are necessary to further enhance understanding of this find.


Asunto(s)
Antígenos CD , Linfocitos T CD4-Positivos , COVID-19 , Proteína del Gen 3 de Activación de Linfocitos , Análisis de la Aleatorización Mendeliana , Sitios de Carácter Cuantitativo , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Factores de Riesgo , Antígenos CD/genética , Antígenos CD/metabolismo , Análisis de la Célula Individual/métodos , Proteínas de Unión al GTP/genética , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Biomarcadores , Polimorfismo de Nucleótido Simple , Masculino , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo
9.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39337585

RESUMEN

Tuberculosis (TB) is a global infectious threat, and the emergence of multidrug-resistant TB has become a major challenge in eradicating the disease that requires the discovery of new treatment strategies. This study aimed to elucidate the immune infiltration and molecular regulatory network of T cell-interacting activating receptors on myeloid cell 1 (TARM1)-related genes based on a bioinformatics analysis. The GSE114911 dataset was obtained from the Gene Expression Omnibus (GEO) and screened to identify 17 TARM1-related differentially expressed genes (TRDEGs). Genes interacting with the TRDEGs were analyzed using a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A gene set enrichment analysis (GSEA) was used to identify the biological pathways significantly associated with a Mycobacterium tuberculosis (Mtb) infection. The key genes were obtained based on Cytoscape's cytoHubba plug-in. Furthermore, protein-protein interaction (PPI) networks were analyzed through STRING, while mRNA-RNA-binding protein (RBP) and mRNA-transcription factor (TF) interaction networks were developed utilizing the StarBase v3.0 and ChIPBase databases. In addition, the diagnostic significance of key genes was evaluated via receiver operating characteristic (ROC) curves, and the immune infiltration was analyzed using an ssGSEA and MCPCounter. The key genes identified in the GSE114911 dataset were confirmed in an independent GSE139825 dataset. A total of seventeen TRDEGs and eight key genes were obtained in a differential expression analysis using the cytoHubba plug-in. Through the GO and KEGG analysis, it was found that these were involved in the NF-κB, PI3K/Akt, MAPK, and other pathways related to inflammation and energy metabolism. Furthermore, the ssGSEA and MCPCounter analysis revealed a significant rise in activated T cells and T helper cells within the Mtb infection group, which were markedly associated with these key genes. This implies their potential significance in the anti-Mtb response. In summary, our results show that TRDEGs are linked to inflammation, energy metabolism, and immune cells, offering fresh insights into the mechanisms underlying TB pathogenesis and supporting further investigation into the possible molecular roles of TARM1 in TB, as well as assisting in the identification of prospective diagnostic biomarkers.


Asunto(s)
Redes Reguladoras de Genes , Mycobacterium tuberculosis , Mapas de Interacción de Proteínas , Tuberculosis , Humanos , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/inmunología , Mycobacterium tuberculosis/genética , Mapas de Interacción de Proteínas/genética , Biología Computacional/métodos , Ontología de Genes , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Transducción de Señal/genética
10.
J Environ Manage ; 366: 121825, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996604

RESUMEN

Chelator-assisted phytoremediation is an efficacious method for promoting the removal efficiency of heavy metals (HMs). The effects of N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) and polyaspartic acid (PASP) on Cd uptake and pyrene removal by Solanum nigrum L. (S. nigrum) were compared in this study. Using GLDA or PASP, the removal efficiency of pyrene was over 98%. And PASP observably raised the accumulation and transport of Cd by S. nigrum compared with GLDA. Meanwhile, both GLDA and PASP markedly increased soil dehydrogenase activities (DHA) and microbial activities. DHA and microbial activities in the PASP treatment group were 1.05 and 1.06 folds of those in the GLDA treatment group, respectively. Transcriptome analysis revealed that 1206 and 1684 differentially expressed genes (DEGs) were recognized in the GLDA treatment group and PASP treatment group, respectively. Most of the DEGs found in the PASP treatment group were involved in the metabolism of carbohydrates, the biosynthesis of brassinosteroid and flavonoid, and they were up-regulated. The DEGs related to Cd transport were screened, and ABCG3, ABCC4, ABCG9 and Nramp5 were found to be relevant with the reduction of Cd stress in S. nigrum by PASP. Furthermore, with PASP treated, transcription factors (TFs) related to HMs such as WRKY, bHLH, AP2/ERF, MYB were down-regulated, while more MYB and bZIP TFs were up-regulated. These TFs associated with plant stress resistance would work together to induce oxidative stress. The above results indicated that PASP was more conducive for phytoremediation of Cd-pyrene co-contaminated soil than GLDA.


Asunto(s)
Biodegradación Ambiental , Cadmio , Pirenos , Contaminantes del Suelo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Pirenos/metabolismo , Suelo/química , Péptidos/metabolismo , Perfilación de la Expresión Génica , Ácido Glutámico/metabolismo
11.
BMC Plant Biol ; 23(1): 298, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268918

RESUMEN

BACKGROUND: C2H2 zinc finger proteins (C2H2-ZFPs), one of the largest transcription factors, play a variety of roles in plant development and growth as well as stress response. While, the evolutionary history and expression profile of the C2H2-ZFP genes in Larix kaempferi (LkZFPs) have not been reported so far. RESULTS: In this study, the whole genome of the LkZFPs was identified and characterized, including physicochemical properties, phylogenetic relationships, conservative motifs, the promoter cis-elements and Gene Ontology (GO) annotation. We identified 47 LkZFPs and divided them into four subfamilies based on phylogenetic analysis and conserved motifs. Subcellular localization prediction showed that most of the LkZFPs were located in the nucleus. Promoter cis-element analysis suggested that the LkZFPs may be involved in the regulation of stress responses. Moreover, Real-time quantitative PCR (RT-qPCR) results showed that Q-type LkZFP genes were involved in the response to abiotic stress, such as salt, drought and hormone stresses. Subcellular localization results showed that LkZFP7 and LkZFP37 were located in the nucleus, LkZFP32 was located in both cytoplasm and nucleus. CONCLUSION: The identification and functional analysis of LkZFPs suggested that some LkZFP genes might play important roles in coping with both biological and abiotic stresses. These results could further increase understanding of the function of the LkZFPs, and provide some research direction and theoretical support.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Larix , Dedos de Zinc CYS2-HIS2/genética , Estudio de Asociación del Genoma Completo , Larix/genética , Larix/metabolismo , Filogenia , Regiones Promotoras Genéticas , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
12.
J Transl Med ; 21(1): 885, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057859

RESUMEN

BACKGROUND: With the development of cancer precision medicine, a huge amount of high-dimensional cancer information has rapidly accumulated regarding gene alterations, diseases, therapeutic interventions and various annotations. The information is highly fragmented across multiple different sources, making it highly challenging to effectively utilize and exchange the information. Therefore, it is essential to create a resource platform containing well-aggregated, carefully mined, and easily accessible data for effective knowledge sharing. METHODS: In this study, we have developed "Consensus Cancer Core" (Tri©DB), a new integrative cancer precision medicine knowledgebase and reporting system by mining and harmonizing multifaceted cancer data sources, and presenting them in a centralized platform with enhanced functionalities for accessibility, annotation and analysis. RESULTS: The knowledgebase provides the currently most comprehensive information on cancer precision medicine covering more than 40 annotation entities, many of which are novel and have never been explored previously. Tri©DB offers several unique features: (i) harmonizing the cancer-related information from more than 30 data sources into one integrative platform for easy access; (ii) utilizing a variety of data analysis and graphical tools for enhanced user interaction with the high-dimensional data; (iii) containing a newly developed reporting system for automated annotation and therapy matching for external patient genomic data. Benchmark test indicated that Tri©DB is able to annotate 46% more treatments than two officially recognized resources, oncoKB and MCG. Tri©DB was further shown to have achieved 94.9% concordance with administered treatments in a real clinical trial. CONCLUSIONS: The novel features and rich functionalities of the new platform will facilitate full access to cancer precision medicine data in one single platform and accommodate the needs of a broad range of researchers not only in translational medicine, but also in basic biomedical research. We believe that it will help to promote knowledge sharing in cancer precision medicine. Tri©DB is freely available at www.biomeddb.org , and is hosted on a cutting-edge technology architecture supporting all major browsers and mobile handsets.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Genómica/métodos , Neoplasias/genética , Neoplasias/terapia , Bases del Conocimiento
13.
J Med Virol ; 95(1): e28407, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519597

RESUMEN

To control the ongoing COVID-19 pandemic, a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been developed. However, the rapid mutations of SARS-CoV-2 spike (S) protein may reduce the protective efficacy of the existing vaccines which is mainly determined by the level of neutralizing antibodies targeting S. In this study, we screened prevalent S mutations and constructed 124 pseudotyped lentiviral particles carrying these mutants. We challenged these pseudoviruses with sera vaccinated by Sinovac CoronaVac and ZF2001 vaccines, two popular vaccines designed for the initial strain of SARS-CoV-2, and then systematically assessed the susceptivity of these SARS-CoV-2 variants to the immune sera of vaccines. As a result, 14 S mutants (H146Y, V320I + S477N, V382L, K444R, L455F + S477N, L452M + F486L, F486L, Y508H, P521R, A626S, S477N + S698L, A701V, S477N + T778I, E1144Q) were found to be significantly resistant to neutralization, indicating reduced protective efficacy of the vaccines against these SARS-CoV-2 variants. In addition, F486L and Y508H significantly enhanced the utilization of human angiotensin-converting enzyme 2, suggesting a potentially elevated infectivity of these two mutants. In conclusion, our results show that some prevalent S mutations of SARS-CoV-2 reduced the protective efficacy of current vaccines and enhance the infectivity of the virus, indicating the necessity of vaccine renewal and providing direction for the development of new vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Anticuerpos Antivirales , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Pandemias , Anticuerpos Neutralizantes , Mutación
14.
Bioorg Chem ; 130: 106228, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356371

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is a promising target for the treatment of malignant tumors. The discovery of nucleoside-derived inhibitors against PRMT5 with novel scaffold has been challenging. Herein, we report our effort on the design and synthesis of nucleoside derivatives bearing sulfonamide scaffold as potent PRMT5 inhibitors. The representative compound 23n was identified as a potent and selective PRMT5 inhibitor with an IC50 value of 8 nM. Molecular docking study demonstrated the binding mode of compound 23n and illustrated its inhibitory activity to PRMT5. The Trimethyl Lock prodrug strategy was used to afford prodrug 36 with lower polarity which could rapidly release the active compound 23n after entering the tumor cells. Cell-based assays revealed that the prodrug 36 restrained the proliferation of Z-138 and MOLM-13 cells and suppressed methylation of PRMT5 substrate more potently than 23n. Additionally, both compound 23n and 36 exerted antiproliferative effects against Z-138 cells mainly by inducing apoptosis effectively rather than arresting cell cycle. Thus, compounds 23n and 36 represent a series of potent PRMT5 inhibitor with novel scaffold.


Asunto(s)
Nucleósidos , Profármacos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Sulfonamidas/farmacología , Inhibidores Enzimáticos/farmacología , Sulfanilamida
15.
PLoS Genet ; 16(9): e1008704, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986702

RESUMEN

ER stress occurs in many physiological and pathological conditions. However, how chronic ER stress is alleviated in specific cells in an intact organism is an outstanding question. Here, overexpressing the gap junction protein UNC-9 (Uncoordinated) in C. elegans neurons triggers the Ire1-Xbp1-mediated stress response in an age-dependent and cell-autonomous manner. The p38 MAPK PMK-3 regulates the chronic stress through IRE-1 phosphorylation. Overexpressing gap junction protein also activates autophagy. The insulin pathway functions through autophagy, but not the transcription of genes encoding ER chaperones, to counteract the p38-Ire1-Xbp1-mediated stress response. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in a subset of cells in multicellular organism.


Asunto(s)
Autofagia/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Estrés del Retículo Endoplásmico/fisiología , Insulina/metabolismo , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estrés Fisiológico , Respuesta de Proteína Desplegada/fisiología
16.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240255

RESUMEN

NF-YB, a subfamily of Nuclear Factor Y (NF-Y) transcription factor, play crucial role in many biological processes of plant growth and development and abiotic stress responses, and they can therefore be good candidate factors for breeding stress-resistant plants. However, the NF-YB proteins have not yet been explored in Larix kaempferi, a tree species with high economic and ecological values in northeast China and other regions, limiting the breeding of anti-stress L. kaempferi. In order to explore the roles of NF-YB transcription factors in L. kaempferi, we identified 20 LkNF-YB family genes from L. kaempferi full-length transcriptome data and carried out preliminary characterization of them through series of analyses on their phylogenetic relationships, conserved motif structure, subcellular localization prediction, GO annotation, promoter cis-acting elements as well as expression profiles under treatment of phytohormones (ABA, SA, MeJA) and abiotic stresses (salt and drought). The LkNF-YB genes were classified into three clades through phylogenetic analysis and belong to non-LEC1 type NF-YB transcription factors. They have 10 conserved motifs; all genes contain a common motif, and their promoters have various phytohormones and abiotic stress related cis-acting elements. Quantitative real time reverse transcription PCR (RT-qPCR) analysis showed that the sensitivity of the LkNF-YB genes to drought and salt stresses was higher in leaves than roots. The sensitivity of LKNF-YB genes to ABA, MeJA, SA stresses was much lower than that to abiotic stress. Among the LkNF-YBs, LkNF-YB3 showed the strongest responses to drought and ABA treatments. Further protein interaction prediction analysis for LkNF-YB3 revealed that LkNF-YB3 interacts with various factors associated with stress responses and epigenetic regulation as well as NF-YA/NF-YC factors. Taken together, these results unveiled novel L. kaempferi NF-YB family genes and their characteristics, providing the basic knowledge for further in-depth studies on their roles in abiotic stress responses of L. kaempferi.


Asunto(s)
Larix , Larix/genética , Larix/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Filogenia , Epigénesis Genética , Fitomejoramiento , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hormonas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30049710

RESUMEN

Seipin, the gene that causes Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), is important for adipocyte differentiation and lipid homeostasis. Previous studies in Drosophila revealed that Seipin promotes ER calcium homeostasis through the Ca2+-ATPase SERCA, but little is known about the events downstream of perturbed ER calcium homeostasis that lead to decreased lipid storage in Drosophila dSeipin mutants. Here, we show that glycolytic metabolites accumulate and the downstream mitochondrial TCA cycle is impaired in dSeipin mutants. The impaired TCA cycle further leads to a decreased level of citrate, a critical component of lipogenesis. Mechanistically, Seipin/SERCA-mediated ER calcium homeostasis is important for maintaining mitochondrial calcium homeostasis. Reduced mitochondrial calcium in dSeipin mutants affects the TCA cycle and mitochondrial function. The lipid storage defects in dSeipin mutant fat cells can be rescued by replenishing mitochondrial calcium or by restoring the level of citrate through genetic manipulations or supplementation with exogenous metabolites. Together, our results reveal that Seipin promotes adipose tissue lipid storage via calcium-dependent mitochondrial metabolism.


Asunto(s)
Calcio/metabolismo , Ciclo del Ácido Cítrico , Proteínas de Drosophila/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Tejido Adiposo/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Subunidades gamma de la Proteína de Unión al GTP/genética , Mitocondrias/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
18.
Dev Growth Differ ; 64(2): 106-115, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34510425

RESUMEN

Developmental biology research in China started from experimental embryology, in particular from studies on aquatic and reptile animals. The recent growth of the developmental biology community in China parallels the increased governmental funding support and the recruitment of overseas talents. This flourishing field in China embraces the activities of developmental biology-related societies, national meetings, key research initiatives and talented scientists. The first Development paper from China, published in 2000, marked the beginning of a new era. More recently, the second decade in the 21st century witnessed the blossoming of developmental biology research in China. Significant research spotlights, technical advances, and up-and-coming areas will be discussed in this overview.


Asunto(s)
Biología Evolutiva , Flores , Animales , China , Biología Evolutiva/historia
19.
Respir Res ; 23(1): 155, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698192

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a neutrophil-associated disease. Delayed neutrophil apoptosis and increased levels of neutrophil extracellular traps (NETs) have been described in ARDS. We aimed to investigate the relationship between these phenomena and their potential as inflammation drivers. We hypothesized that delayed neutrophil apoptosis might enhance NET formation in ARDS. METHOD: Our research was carried out in three aspects: clinical research, animal experiments, and in vitro experiments. First, we compared the difference between neutrophil apoptosis and NET levels in healthy controls and patients with ARDS and analyzed the correlation between neutrophil apoptosis and NET levels in ARDS. Then, we conducted animal experiments to verify the effect of neutrophil apoptosis on NET formation in Lipopolysaccharide-induced acute lung injury (LPS-ALI) mice. Furthermore, this study explored the relationship between neutrophil apoptosis and NETs at the cellular level. Apoptosis was assessed using morphological analysis, flow cytometry, and western blotting. NET formation was determined using immunofluorescence, PicoGreen assay, SYTOX Green staining, and western blotting. RESULTS: ARDS neutrophils lived longer because of delayed apoptosis, and the cyclin-dependent kinase inhibitor, AT7519, reversed this phenomenon both in ARDS neutrophils and neutrophils in bronchoalveolar lavage fluid (BALF) of LPS-ALI mice. Neutrophils in a medium containing pro-survival factors (LPS or GM-CSF) form more NETs, which can also be reversed by AT7519. Tissue damage can be reduced by promoting neutrophil apoptosis. CONCLUSIONS: Neutrophils with extended lifespan in ARDS usually enhance NET formation, which aggravates inflammation. Enhancing neutrophil apoptosis in ARDS can reduce the formation of NETs, inhibit inflammation, and consequently alleviate ARDS.


Asunto(s)
Trampas Extracelulares , Síndrome de Dificultad Respiratoria , Animales , Apoptosis , Humanos , Inflamación , Lipopolisacáridos/toxicidad , Ratones , Neutrófilos , Síndrome de Dificultad Respiratoria/inducido químicamente
20.
EMBO Rep ; 21(11): e50214, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33034119

RESUMEN

Lipid droplets (LDs) are dynamic cytoplasmic organelles present in most eukaryotic cells. The appearance of LDs in neurons is not usually observed under physiological conditions, but is associated with neural diseases. It remains unclear how LD dynamics is regulated in neurons and how the appearance of LDs affects neuronal functions. We discovered that mutations of two key lipolysis genes atgl-1 and lid-1 lead to LD appearance in neurons of Caenorhabditis elegans. This neuronal lipid accumulation protects neurons from hyperactivation-triggered neurodegeneration, with a mild decrease in touch sensation. We also discovered that reduced biosynthesis of polyunsaturated fatty acids (PUFAs) causes similar effects and synergizes with decreased lipolysis. Furthermore, we demonstrated that these changes in lipolysis and PUFA biosynthesis increase PUFA partitioning toward triacylglycerol, and reduced incorporation of PUFAs into phospholipids increases neuronal protection. Together, these results suggest the crucial role of neuronal lipolysis in cell-autonomous regulation of neural functions and neurodegeneration.


Asunto(s)
Gotas Lipídicas , Lipólisis , Animales , Ácidos Grasos Insaturados/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Neuronas , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA