Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(8): 4993-5000, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29985625

RESUMEN

We observed the small-size-induced hardening and plasticity of brittle ionic MgO as a result of abnormally triggered dislocation gliding on a non-charge-balanced slip system. The indentation tests of ⟨111⟩ MgO pillars revealed an increased hardness with decreasing pillar size, and the tips of the pillars that were ≤200 nm were plastically deformed. The in situ compression tests of ⟨111⟩ MgO nanopillars in transmission electron microscopy verified aligned dislocation-mediated plasticity on the {111}⟨110⟩ and {100}⟨110⟩ systems rather than the charge-balanced {110}⟨110⟩ slip system.

2.
Opt Express ; 23(15): A1024-9, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367678

RESUMEN

In this paper, Lu3Al5O12:Ce3+ and CaAlSiN3: Eu2+ co-doped glass are presented as color conversion materials for white light-emitting diodes (WLEDs). Through adjusting the thickness of the glass phosphors, the chromaticity and CCT of the WLEDs follows the Planckian locus well. The WLEDs show CCT ranging from ~4000K to ~7000K with high CRI ranging from 83 to 90 due to the wide emission spectrum from the proposed glass phosphors. The glass phosphors provide an effective way to achieve chromaticity-tailorable WLEDs with high color quality for indoor lighting applications.

3.
Opt Express ; 23(23): 29723-8, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26698454

RESUMEN

The fabrication and characteristics of Ce/Cr-doped crystal fibers employing drawing tower technique are reported. The fluorescence spectrum of the Ce/Cr fibers at the core diameter ranging from 10 to 21 µm exhibited a 200-nm near-Gaussian broadband emission which enabled to provide an axial resolution of 1.8-µm and a power density of 79.1 nW/nm. The proposed broadband Ce/Cr-doped crystal fibers may be provided as a high-resolution light source for the use in optical coherence tomography system as well as industrial inspection and biomedical imaging applications.

4.
Opt Express ; 22 Suppl 3: A671-8, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24922375

RESUMEN

New broadband glass phosphors with excellent thermal stability were proposed and experimentally demonstrated for white light-emitting-diodes (WLEDs). The novel glass phosphors were realized through dispersing multiple phosphors into SiO2 based glass (SiO2-Na2O-Al2O3-CaO) at 680°C. Y3Al5O12:Ce³âº (YAG), Lu3Al5O12:Ce³âº (LuAG), and CaAlSiN3: Eu²âº (nitride) phosphor crystals were chosen respectively as the yellow, green, and red emitters of the glass phosphors. The effect of sintering temperature on inter-diffusion reduction between phosphor crystals and amorphous SiO2 in nitride-doped glass phosphors was studied and evidenced by the aid of high-resolution transmission electron microscopy (HRTEM). Broadband glass phosphors with high quantum-yield of 55.6% were thus successfully realized through the implementation of low sintering temperature. Proof-of-concept devices utilizing the novel broadband phosphors were developed to generate high-quality cool-white light with trisstimulus coordinates (x, y) = (0.358, 0.288), color-rending index (CRI) = 85, and correlated color temperature (CCT) = 3923K. The novel broadband glass phosphors with excellent thermal stability are essentially beneficial to the applications for next-generation solid-state indoor lighting, especially in the area where high power and absolute reliability are required.

5.
Nano Lett ; 13(11): 5247-54, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24063581

RESUMEN

In situ nanoscopic observations of healthy and osteoporotic bone nanopillars under compression were performed. The structural-mechanical property relationship at the atomic scale suggests that cortical bone performance is correlated to the feature, arrangement, movement, distortion, and fracture of hydroxyapatite nanocrystals. Healthy bone comprising tightly bound mineral nanocrystals shows high structural stability with nanoscopic lattice distortions and dislocation activities. On the other hand, osteoporotic bone exhibits brittleness owing to the movements of dispersed minerals in and intergranular fracture along a weak organic matrix.


Asunto(s)
Huesos/fisiopatología , Nanotecnología , Osteoporosis/fisiopatología , Animales , Fenómenos Biomecánicos , Ratones , Microscopía Electrónica de Transmisión
6.
Opt Express ; 21(4): 4790-5, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23482013

RESUMEN

The fluorescence enhancement in broadband Cr-doped fibers (CDFs) fabricated by a drawing tower with a redrawn powder-in-tube preform is proposed and demonstrated. The CDFs after heat treatment exhibited Cr4⁺ emission enhancement with spectral density of 200 pW/nm, verified by the formation of α-Mg2SiO4 nanocrystalline structures in the core of CDFs. The high fluorescence achievement in the CDFs is essential to develop a broadband CDF amplifier for next-generation optical communication systems.


Asunto(s)
Cromo/química , Tecnología de Fibra Óptica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Fluorescencia
7.
Nanomaterials (Basel) ; 13(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36616100

RESUMEN

The nanoscopic deformation of ⟨111⟩ nanotwinned copper nanopillars under strain rates between 10-5/s and 5 × 10-4/s was studied by using in situ transmission electron microscopy. The correlation among dislocation activity, twin boundary instability due to incoherent twin boundary migration and corresponding mechanical responses was investigated. Dislocations piled up in the nanotwinned copper, giving rise to significant hardening at relatively high strain rates of 3-5 × 10-4/s. Lower strain rates resulted in detwinning and reduced hardening, while corresponding deformation mechanisms are proposed based on experimental results. At low/ultralow strain rates below 6 × 10-5/s, dislocation activity almost ceased operating, but the migration of twin boundaries via the 1/4 ⟨101¯ ⟩ kink-like motion of atoms is suggested as the detwinning mechanism. At medium strain rates of 1-2 × 10-4/s, detwinning was decelerated likely due to the interfered kink-like motion of atoms by activated partial dislocations, while dislocation climb may alternatively dominate detwinning. These results indicate that, even for the same nanoscale twin boundary spacing, different nanomechanical deformation mechanisms can operate at different strain rates.

8.
Opt Express ; 15(22): 14382-8, 2007 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19550716

RESUMEN

The fabrication of a Cr-doped fiber using a drawing-tower method with Cr:YAG as the core of the preform is presented. The Cr-doped YAG preform was fabricated by a rod-in-tube method. By employing a negative pressure control in drawing-tower technique on the YAG preform, the Cr-doped fibers with a better core circularity and uniformity, and good interface between core and cladding were fabricated. The amplified spontaneous emission spectrum showed a broadband emission of 1.2 to 1.6 mum with the output power density about a few nW/nm. The results indicate that this new Cr-doped fiber may be used as a broadband fiber amplifier to cover the bandwidths in the whole 1.3-1.6 mum range of low-loss and lowdispersion windows of silica fibers.

9.
Opt Express ; 14(19): 8492-7, 2006 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19529227

RESUMEN

We report on the first fabrication of a Cr-doped fiber using a drawing-tower method with Cr:YAG as the core of the preform. Both Cr3+ and Cr4+ ions coexist in the Cr-doped fiber, and the amplified spontaneous emission (ASE) spectrum shows a broadband emission of 1.2 to 1.55 mum which can not be realized by using currently available fiber amplifiers. This indicates that the new Cr-doped fibers have the potential for being used as a broadband fiber amplifier to cover the bandwidth of the entire 1.3-1.6 mum range which exhibit 300 nm usable spectral bands.

10.
Sci Rep ; 4: 4162, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24561911

RESUMEN

We report multi-component high-entropy materials as extraordinarily robust diffusion barriers and clarify the highly suppressed interdiffusion kinetics in the multi-component materials from structural and thermodynamic perspectives. The failures of six alloy barriers with different numbers of elements, from unitary Ti to senary TiTaCrZrAlRu, against the interdiffusion of Cu and Si were characterized, and experimental results indicated that, with more elements incorporated, the failure temperature of the barriers increased from 550 to 900°C. The activation energy of Cu diffusion through the alloy barriers was determined to increase from 110 to 163 kJ/mole. Mechanistic analyses suggest that, structurally, severe lattice distortion strains and a high packing density caused by different atom sizes, and, thermodynamically, a strengthened cohesion provide a total increase of 55 kJ/mole in the activation energy of substitutional Cu diffusion, and are believed to be the dominant factors of suppressed interdiffusion kinetics through the multi-component barrier materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA