Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(4): 365-381, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37216691

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of patients who receive the most intensive treatment inevitably experience disease relapse, likely resulting from the persistence of drug-resistant leukemia stem cells (LSCs). AML cells, especially LSCs, are highly dependent on mitochondrial oxidative phosphorylation (OXPHOS) for survival, but the mechanism involved in OXPHOS hyperactivity is unclear, and a noncytotoxic strategy to inhibit OXPHOS is lacking. To our knowledge, this study is the first to demonstrate that ZDHHC21 palmitoyltransferase serves as a key regulator of OXPHOS hyperactivity in AML cells. The depletion/inhibition of ZDHHC21 effectively induced myeloid differentiation and weakened stemness potential by inhibiting OXPHOS in AML cells. Interestingly, FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD)-mutated AML cells expressed significantly higher levels of ZDHHC21 and exhibited better sensitivity to ZDHHC21 inhibition. Mechanistically, ZDHHC21 specifically catalyzed the palmitoylation of mitochondrial adenylate kinase 2 (AK2) and further activated OXPHOS in leukemic blasts. Inhibition of ZDHHC21 arrested the in vivo growth of AML cells and extended the survival of mice inoculated with AML cell lines and patient derived xenograft AML blasts. Moreover, targeting ZDHHC21 to suppress OXPHOS markedly eradicated AML blasts and enhanced chemotherapy efficacy in relapsed/refractory leukemia. Together, these findings not only uncover a new biological function of palmitoyltransferase ZDHHC21 in regulating AML OXPHOS but also indicate that ZDHHC21 inhibition is a promising therapeutic regimen for patients with AML, especially relapsed/refractory leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Fosforilación Oxidativa , Animales , Humanos , Ratones , Diferenciación Celular , Tirosina Quinasa 3 Similar a fms/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
J Am Chem Soc ; 146(14): 9779-9789, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561350

RESUMEN

Protein O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.


Asunto(s)
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Procesamiento Proteico-Postraduccional , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo
3.
Small ; : e2312019, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389179

RESUMEN

The growing interest in so-called interface coupling strategies arises from their potential to enhance the performance of active electrode materials. Nevertheless, designing a robust coupled interface in nanocomposites for stable electrochemical processes remains a challenge. In this study, an epitaxial growth strategy is proposed by synthesizing sulfide rhenium (ReS2 ) on exfoliated black phosphorus (E-BP) nanosheets, creating an abundance of robust interfacial linkages. Through spectroscopic analysis using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the authors investigate the interfacial environment. The well-developed coupled interface and structural stability contribute to the impressive performance of the 3D-printed E-BP@ReS2 -based micro-supercapacitor, achieving a specific capacitance of 47.3 mF cm-2 at 0.1 mA cm-2 and demonstrating excellent long-term cyclability (89.2% over 2000 cycles). Furthermore, density functional theory calculations unveil the positive impact of the strongly coupled interface in the E-BP@ReS2 nanocomposite on the adsorption of H+ ions, showcasing a significantly reduced adsorption energy of -2.17 eV. The strong coupling effect facilitates directional charge delocalization at the interface, enhancing the electrochemical performance of electrodes and resulting in the successful construction of advanced micro-supercapacitors.

4.
J Environ Manage ; 362: 121312, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824888

RESUMEN

Ectomycorrhizal (EcM) fungi play an important role in nutrient cycling and community ecological dynamics and are widely acknowledged as important components of forest ecosystems. However, little information is available regarding EcM fungal community structure or the possible relationship between EcM fungi, soil properties, and forestry activities in Pinus massoniana forests. In this study, we evaluated soil properties, extracellular enzyme activities, and fungal diversity and community composition in root and soil samples from pure Pinus massoniana natural forests, pure P. massoniana plantations, and P. massoniana and Liquidambar gracilipes mixed forests. The mixed forest showed the highest EcM fungal diversity in both root and bulk soil samples. Community composition and co-occurrence network structures differed significantly between forest types. Variation in the EcM fungal community was significantly correlated with the activities of ß-glucuronidase and ß-1,4-N-acetylglucosaminidase, whereas non-EcM fungal community characteristics were significantly correlated with ß-1,4-glucosidase and ß-glucuronidase activities. Furthermore, stochastic processes predominantly drove the assembly of both EcM and non-EcM fungal communities, while deterministic processes exerted greater influence on soil fungal communities in mixed forests compared to pure forests. Our findings may inform a deeper understanding of how the assembly processes and environmental roles of subterranean fungal communities differ between mixed and pure plantations and may provide insights for how to promote forest sustainability in subtropical areas.


Asunto(s)
Bosques , Micorrizas , Pinus , Microbiología del Suelo , Pinus/microbiología , Suelo/química , Biodiversidad , Hongos , Ecosistema
5.
J Environ Sci (China) ; 139: 170-181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105045

RESUMEN

The nanoscale zinc oxide (n-ZnO) was used in food packages due to its superior antibacterial activity, resulting in potential intake of n-ZnO through the digestive system, wherein n-ZnO interacted with saliva. In recent, facet engineering, a technique for controlling the exposed facets, was applied to n-ZnO, whereas risk of n-ZnO with specific exposed facets in saliva was ignored. ZnO nanoflakes (ZnO-0001) and nanoneedles (ZnO-1010) with the primary exposed facets of {0001} and {1010} respectively were prepared in this study, investigating stability and toxicity of ZnO-0001 and ZnO-1010 in synthetic saliva. Both ZnO-0001 and ZnO-1010 partially transformed into amorphous Zn3(PO4)2 within 1 hr in the saliva even containing orgnaic components, forming a ZnO-Zn3(PO4)2 core-shell structure. Nevertheless, ZnO-1010 relative to ZnO-0001 would likely transform into Zn3(PO4)2, being attributed to superior dissolution of {1010} facet due to its lower vacancy formation energy (1.15 eV) than {0001} facet (3.90 eV). The toxicity of n-ZnO to Caco-2 cells was also dependent on the primary exposed facet; ZnO-0001 caused cell toxicity through oxidative stress, whereas ZnO-1010 resulted in lower cells viability than ZnO-0001 through oxidative stress and membrane damage. Density functional theory calculations illustrated that ·O2- was formed and released on {1010} facet, yet O22- instead of ·O2- was generated on {0001} facet, leading to low oxidative stress from ZnO-0001. All findings demonstrated that stability and toxicity of n-ZnO were dependent on the primary exposed facet, improving our understanding of health risk of nanomaterials.


Asunto(s)
Óxido de Zinc , Humanos , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Células CACO-2 , Saliva , Estrés Oxidativo
6.
Small ; 19(14): e2206572, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36592428

RESUMEN

On-skin electronics based on impermeable elastomers and stacking structures often suffer from inferior sweat-repelling capabilities and severe mechanical mismatch between sub-layers employed, which significantly impedes their lengthy wearing comfort and functionality. Herein, inspired by the transpiration system of vascular plants and the water diode phenomenon, a hierarchical nonwoven electronic textile (E-textile) with multi-branching microfibers and robust interlayer adhesion is rationally developed. The layer-by-layer electro-airflow spinning method and selective oxygen plasma treatment are utilized to yield a porosity-hydrophilicity dual-gradient. The resulting E-textile shows unidirectional, nonreversible, and anti-gravity water transporting performance even upon large-scale stretching (250%), excellent mechanical matching between sub-layers, as well as a reversible color-switching ability to visualize body temperature. More importantly, the conducting and skin-conformal E-textile demonstrates accurate and stable detecting capability for biomechanical and bioelectrical signals when applied as an on-skin bioelectrode, including different human activities, electrocardiography, electromyogram, and electrodermal activity signals. Further, the E-textile can be efficiently implemented in human-machine interfaces to build a gesture-controlled dustbin and a smart acousto-optic alarm. Hence, this hierarchically-designed E-textile with integrated functionalities offers a practical and innovative method for designing comfortable and daily applicable on-skin electronics.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Sudor , Temperatura Corporal , Temperatura , Porosidad , Textiles , Electrónica , Interacciones Hidrofóbicas e Hidrofílicas
7.
Support Care Cancer ; 31(7): 426, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37369858

RESUMEN

AIMS: The study aims to develop a model to predict the risk of moderate to severe cancer-related fatigue (CRF) in colorectal cancer patients after chemotherapy. METHODS: The study population was colorectal cancer patients who received chemotherapy from September 2021 to June 2022 in a grade 3 and first-class hospital. Demographic, clinical, physiological, psychological, and socioeconomic factors were collected 1 to 2 days before the start of chemotherapy. Patients were followed up for 1 to 2 days after the end of chemotherapy to assess fatigue using the Piper Fatigue Scale. A random sampling method was used to select 181 patients with moderate to severe CRF as the case group. The risk set sampling method was used to select 181 patients with mild or no CRF as the control group. Logistic regression, back-propagation artificial neural network (BP-ANN), and decision tree models were constructed and compared. RESULTS: A total of 362 patients consisting of 241 derivation samples and 121 validation samples were enrolled. Comparing the three models, the prediction effect of BP-ANN was the best, with a receiver operating characteristic (ROC) curve of 0.83. Internal and external verification indicated that the accuracy of prediction was 70.4% and 80.8%, respectively. Significant predictors identified were surgery, complications, hypokalaemia, albumin, neutrophil percentage, pain (VAS score), Activities of Daily Living (ADL) score, sleep quality (PSQI score), anxiety (HAD-A score), depression (HAD-D score), and nutrition (PG-SGA score). CONCLUSIONS: BP-ANN was the best model, offering theoretical guidance for clinicians to formulate a tool to identify patients at high risk of moderate to severe CRF.


Asunto(s)
Actividades Cotidianas , Neoplasias Colorrectales , Humanos , Estudios de Casos y Controles , Curva ROC , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/tratamiento farmacológico , Fatiga/epidemiología , Fatiga/etiología , Fatiga/psicología
8.
Nano Lett ; 22(11): 4560-4568, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583326

RESUMEN

Polyimide aerogels with mechanical robustness, great compressibility, excellent antifatigue properties, and intriguing functionality have captured enormous attention in diverse applications. Here, enlightened by the xylem parenchyma of dicotyledonous stems, a radially architectured polyimide/MXene composite aerogel (RPIMX) with reversible compressibility is developed by combining the interfacial enhancing strategy and radial ice-templating method. The strong interaction between MXene flakes and polymer can glue the MXene to form continuous lamellae, the ice crystals grow preferentially along the radial temperature gradient can effectively constrain the lamellae to create a biomimetic radial lamellar architecture. As a result, the nature-inspired RPIMX composite aerogel with centrosymmetric lamellar structure and oriented channels manifests excellent mechanical strength, electrical conductivity, and water transporting capability along the longitudinal direction, endowing itself with intriguing applications for accurate human motion monitoring and efficient photothermal evaporation. These exciting properties make the biomimetic RPIMX aerogels promising candidates for flexible piezoresistive sensors and photothermal evaporators.


Asunto(s)
Hielo , Vapor , Conductividad Eléctrica , Humanos , Luz Solar , Xilema
9.
Nano Lett ; 22(18): 7597-7605, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36083829

RESUMEN

Stretchable electronics have attracted surging attention for next-generation smart wearables, yet traditional flexible devices fabricated on hermetical elastic substrates cannot satisfy lengthy wearing comfort and signal stability due to their poor moisture and air permeability. Herein, perspiration-wicking and luminescent on-skin electrodes are fabricated on superelastic nonwoven textiles with a Janus configuration. Through the electrospin-assisted face-to-face assembly of all-SEBS microfibers with differentiated diameters and composition, porosity and wettability asymmetry are constructed across the textile, endowing it with antigravity water transport capability for continuous sweat release. Also, the phosphor particles evenly encapsulated in the elastic fibers empower the Janus textile with stable light-emitting capability under extreme stretching in a dark environment. Additionally, the precise printing of highly conductive liquid metal (LM) circuits onto the matrix not only equips the electronic textile with broad detectability for various biophysical and electrophysiological signals but also enables successful implementation of human-machine interface (HMIs) to control a mechanical claw.


Asunto(s)
Sudor , Textiles , Acción Capilar , Electrónica , Humanos , Agua
10.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834471

RESUMEN

The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Agregado de Proteínas , Comprensión , Tauopatías/metabolismo , Enfermedad de Alzheimer/metabolismo
11.
Biochem Biophys Res Commun ; 532(2): 285-291, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32873392

RESUMEN

Parkinson's disease (PD) is the second most common progressive neurodegenerative disease, which is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron deposit was found in the SNpc of PD patients and animal models, however, the mechanisms involved in disturbed iron metabolism remain unknown. Identifying the relationship between iron metabolism and PD is important for finding new therapeutic strategies. In this study, we found that transgenic overexpression (OE) of Drosophila mitoferrin (dmfrn) or knockdown of Fer3HCH significantly mitigated the reduced mitochondrial aconitase activity, abnormal wing posture, flight deficits and mitochondrial morphology defects associated with PINK1 loss-of-function (LOF). Further work demonstrated that dmfrn OE or Fer3HCH knockdown significantly rescued the impaired mitochondrial respiration in PINK1 LOF flies, indicating that dmfrn or Fer3HCH may rescue PINK1 LOF phenotypes through elevating mitochondrial bioavailable iron levels to promote mitochondrial respiration.


Asunto(s)
Proteínas de Drosophila/genética , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Aconitato Hidratasa/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Disponibilidad Biológica , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Expresión Génica , Mutación con Pérdida de Función , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Rotenona/toxicidad , Alas de Animales/fisiopatología
12.
Opt Lett ; 45(10): 2866-2869, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32412488

RESUMEN

A laser mode-locking phenomenon based on polarization-dependent loss (PDL) using a passive fiber coil is demonstrated. We propose using a fiber coil operating in low-V-number regime to achieve an enhanced bend-induced PDL and to maintain a reasonable bend loss. A mode-locked thulium doped all-fiber laser is shown using the low-V-number fiber coil. The results indicate that a moderate amount of PDL at 1 dB is sufficient to initiate and sustain a stable CW mode-locking operation. To the best of our knowledge, this is the first demonstration of a CW mode-locked fiber laser based on PDL enabled by a fiber coil.

13.
Nanotechnology ; 30(2): 025401, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30387437

RESUMEN

TT-Nb2O5 nanoparticles grown on electrically conducting fluorine-doped tin oxide (FTO) glass were successfully synthesized by a facile one-pot hydrothermal method at low temperature. The as-prepared nanostructured TT-Nb2O5/FTO was directly used as the working electrode to investigate its pseudocapacitive performance without any binder or conductive agent, which exhibited a high specific capacitance of 322 F g-1 at a current density of 3.68 A g-1, excellent rate capability (258.1 F g-1 at a high scan rate of 100 mV s-1 is about 91.6% of that at 5 mV s-1), and good cycling stability (the capacitance retention is 74.3% after 3000 cycles). More importantly, it is the first time electrochemical measurements for Nb2O5 electrode in aqueous electrolyte, which are low-cost and easy to operate, have been carried out.

14.
Bioorg Chem ; 84: 254-259, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30508770

RESUMEN

TAR DNA binding protein 43 (TDP-43) is a key target in amyotrophic lateral sclerosis (ALS) treatment. Here, based on hydrophobic tagging strategy, we designed and synthesized a series of single or double hydrophobic tags conjugated peptides D1-D8. Among them, it was found that D4 displayed strongest ability to induce TDP-43 degradation in cells. D4 could reduce TDP-43 induced cytotoxicity. Besides, D4 could reduce TDP-43 levels in a transgenic drosophila model.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Péptidos/química , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/química , Drosophila melanogaster/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Péptidos/metabolismo , Péptidos/farmacología
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(11): 1275-1280, 2019 Nov 28.
Artículo en Zh | MEDLINE | ID: mdl-31919323

RESUMEN

The malignant degree of cholangiocarcinoma is high, and the early diagnosis is difficult. The vast majority of patients are unresectable when they are diagnosed. The patients have low quality of life and short survival cycle. Traditional radiotherapy and chemotherapy have poor efficacy and lead to side effects, and thus lack effective control measures for cholangiocarcinoma. Endoscopic retrograde cholangiopancreatography (ERCP) is an important method for diagnosing and treating biliary tract diseases. Photodynamic therapy (PDT) is a new local treatment for cholangiocarcinoma. In recent years, ERCP-mediated PDT treatment of cholangiocarcinoma has gradually emerged. ERCP-mediated PDT can effectively relieve the symptoms of patients with cholangiocarcinoma, improve the patients' quality of life, prolong the survival cycle, and is expected to become a new treatment for cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Conductos Biliares Intrahepáticos , Colangiocarcinoma , Fotoquimioterapia , Neoplasias de los Conductos Biliares/diagnóstico , Colangiocarcinoma/diagnóstico , Colangiopancreatografia Retrógrada Endoscópica , Humanos , Calidad de Vida
16.
Biochem Biophys Res Commun ; 487(3): 646-652, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28435068

RESUMEN

Metallothionein (MT) protein families are a class of small and universal proteins rich in cysteine residues. They are synthesized in response to heavy metal stresses to sequester the toxic ions by metal-thiolate bridges. Five MT family members, namely MtnA, MtnB, MtnC, MtnD and MtnE, have been discovered and identified in Drosophila. These five isoforms of MTs are regulated by metal responsive transcription factor dMTF-1 and play differentiated but overlapping roles in detoxification of metal ions. Previous researches have shown that Drosophila MtnB responds to copper (Cu), cadmium (Cd) and zinc (Zn). Interestingly in this study we found that Drosophila MtnB expression also responds to elevated iron levels in the diet. Further investigations revealed that MtnB plays limited roles in iron detoxification, and the direct binding of MtnB to ferrous iron in vitro is also weak. The induction of MtnB by iron turns out to be mediated by iron interference of other metals, because EDTA at even a partial concentration of that of iron can suppress this induction. Indeed, in the presence of iron, zinc homeostasis is altered, as reflected by expression changes of zinc transporters dZIP1 and dZnT1. Thus, iron-mediated MtnB induction appears resulting from interrupted homeostasis of other metals such as zinc, which in turns induced MtnB expression. Metal-metal interaction may more widely exist than we expected.


Asunto(s)
Cobre/metabolismo , Drosophila/metabolismo , Hierro/metabolismo , Metalotioneína/metabolismo , Zinc/metabolismo , Animales , Metales/metabolismo
17.
Cell Mol Life Sci ; 73(1): 1-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26403791

RESUMEN

tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.


Asunto(s)
Neuronas/patología , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Inmunoterapia , Metales/metabolismo , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuronas/metabolismo , Fosforilación , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/terapia , Pliegue de Proteína , Proteolisis , Tauopatías/terapia , Proteínas tau/análisis
18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(1): 34-40, 2017 Feb.
Artículo en Zh | MEDLINE | ID: mdl-29717584

RESUMEN

A solid-liquid two-phase finite element model of articular cartilage and a microscopic finite element model of chondrocytes were established using the finite element software COMSOL in this study. The purpose of the study is to investigate the mechanics environment and the liquid flow field of the host cartilage chondrocytes in each layer by multi-scale method, under physiological load, with the different elastic modulus of artificial cartilage to repair cartilage defect. The simulation results showed that the uniform elastic modulus of artificial cartilage had different influences on the microenvironment of different layer chondrocytes. With the increase of the elastic modulus of artificial cartilage, the stress of the shallow surface layer and the intermediate layer chondrocytes increased and the stress of deep layer chondrocytes decreased. The flow field direction of the middle layer and the bottom layer of cartilage can also be changed by artificial cartilage implantation, as well as the ways of nourishment supply of the middle layer and underlying chondrocytes change.A barrier to underlying chondrocytes nutrition supply may be caused by this, thus resulting in the uncertainty of the repair results. With cross-scale finite element model simulation analysis of chondrocytes, we can quantitatively evaluate the mechanical environment of chondrocytes in each layer of the host cartilage. It is helpful to assess the clinical effect of cartilage defect reparation more accurately.


Asunto(s)
Condrocitos , Cartílago Articular , Fuerza Compresiva , Simulación por Computador , Módulo de Elasticidad , Matriz Extracelular/fisiología , Análisis de Elementos Finitos , Estrés Mecánico
19.
Small ; 12(24): 3235-44, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27135301

RESUMEN

The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications.


Asunto(s)
Carbono/química , Cobalto/química , Hidróxidos/química , Níquel/química , Nitrógeno/química , Biomasa , Electrodos
20.
BMC Musculoskelet Disord ; 17: 126, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980002

RESUMEN

BACKGROUND: Facet joints play a significant role in providing stability to the spine and they have been associated with low back pain symptoms and other spinal disorders. The influence of a follower load on biomechanics of facet joints is unknown. A comprehensive research on the biomechanical role of facets may provide insight into facet joint instability and degeneration. METHOD: A nonlinear finite element (FE) model of lumbar spine (L1-S1) was developed and validated to study the biomechanical response of facets, with different values of follower preload (0 N,500 N,800 N,1200 N), under loadings in the three anatomic planes. In this model, special attention was paid to the modeling of facet joints, including cartilage layer. The asymmetry in the biomechanical response of facets was also discussed. A rate of change (ROC) and an average asymmetry factor (AAF) were introduced to explore and evaluate the preload effect on these facet contact parameters and on the asymmetry under different loading conditions. RESULTS: The biomechanical response of facets changed according to the loading condition. The preload amplified the facet force, contact area and contact pressure in flexion-extension; the same effect was observed on the ipsilateral facet while an opposite effect could be seen on the contralateral facet during lateral bending. For torsion loading, the preload increased contact area, decreased the mean contact pressure, but had almost no effect on facet force. However, all the effects of follower load on facet response became weaker with the increase of preload. The greatest asymmetry of facet response could be found on the ipsilateral side during lateral bending, followed by flexion, bending (contralateral side), extension and torsion. This asymmetry could be amplified by preload in the bending (ipsilateral), torsion loading group, while being reduced in the flexion group. CONCLUSIONS: An analysis combining patterns of contact pressure distribution, facet load, contact area and contact pressure can provide more insight into the biomechanical role of facets under various moment loadings and follower loads. The effect of asymmetry on facet joint response should be fully considered in biomechanical studies of lumbar spine, especially in post structures subjected to physiological loadings.


Asunto(s)
Vértebras Lumbares/fisiología , Modelos Biológicos , Articulación Cigapofisaria/fisiología , Fenómenos Biomecánicos , Módulo de Elasticidad , Análisis de Elementos Finitos , Humanos , Vértebras Lumbares/diagnóstico por imagen , Dinámicas no Lineales , Presión , Tomografía Computarizada por Rayos X , Torsión Mecánica , Soporte de Peso , Articulación Cigapofisaria/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA