Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(45): 22500-22504, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636204

RESUMEN

Mass extinction at the Cretaceous-Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.


Asunto(s)
Ciencias de la Tierra/historia , Agua de Mar/química , Ácidos/análisis , Animales , Ciclo del Carbono , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Planeta Tierra , Foraminíferos/química , Foraminíferos/metabolismo , Fósiles/historia , Historia Antigua , Concentración de Iones de Hidrógeno , Océanos y Mares
2.
Proc Natl Acad Sci U S A ; 112(51): 15562-7, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26630003

RESUMEN

Ammonites are among the best-known fossils of the Phanerozoic, yet their habitat is poorly understood. Three common ammonite families (Baculitidae, Scaphitidae, and Sphenodiscidae) co-occur with well-preserved planktonic and benthic organisms at the type locality of the upper Maastrichtian Owl Creek Formation, offering an excellent opportunity to constrain their depth habitats through isotopic comparisons among taxa. Based on sedimentary evidence and the micro- and macrofauna at this site, we infer that the 9-m-thick sequence was deposited at a paleodepth of 70-150 m. Taxa present throughout the sequence include a diverse assemblage of ammonites, bivalves, and gastropods, abundant benthic foraminifera, and rare planktonic foraminifera. No stratigraphic trends are observed in the isotopic data of any taxon, and thus all of the data from each taxon are considered as replicates. Oxygen isotope-based temperature estimates from the baculites and scaphites overlap with those of the benthos and are distinct from those of the plankton. In contrast, sphenodiscid temperature estimates span a range that includes estimates of the planktonic foraminifera and of the warmer half of the benthic values. These results suggest baculites and scaphites lived close to the seafloor, whereas sphenodiscids sometimes inhabited the upper water column and/or lived closer to shore. In fact, the rarity and poorer preservation of the sphenodiscids relative to the baculites and scaphites suggests that the sphenodiscid shells may have only reached the Owl Creek locality by drifting seaward after death.


Asunto(s)
Evolución Biológica , Cefalópodos/química , Ecosistema , Fósiles , Animales , Isótopos de Carbono/análisis , Cefalópodos/clasificación , Foraminíferos/química , Foraminíferos/clasificación , Moluscos/química , Moluscos/clasificación , Isótopos de Oxígeno/análisis , Paleontología , Plancton/química , Temperatura
3.
Microsc Microanal ; 18(6): 1313-21, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23164215

RESUMEN

A comparative cathodoluminescence (CL) spectroscopic study of extraordinarily well-preserved versus diagenetically altered Turonian (∼92 Ma before present) calcitic and aragonitic microfossils was performed to document the cathodoluminescence characteristics of two common Cretaceous carbonate producers, foraminifera and calcareous dinoflagellates. Unaltered specimens reveal a conspicuous peak in the blue CL band at ≈ 400 nm that has rarely been previously reported for biogenic carbonates. We interpret this luminescence as an indicative feature of the primary bio-mineralized shells of calcareous dinoflagellates and foraminifera. Orange luminescence as the second important CL emission band (≈ 620 nm) in calcite generally increases with diagenetic cement overgrowth and recrystallization but can also be present in unaltered material. Thus, orange CL of biogenic calcite is not an unequivocal diagenetic indicator. Accordingly, spectroscopic investigation of both the ≈ 400 and ≈ 620 nm peaks represents a more objective criterion to evaluate the degree of diagenetic alteration. The ratio of relative intensities of the blue CL versus orange CL can provide a semiquantitative measure with relative intensity ratios blue:orange >2 occurring in the least diagenetically altered microfossils. Comparison of unaltered specimens of separate species reveals elemental differences that potentially indicate species-specific biomineralization or habitats.


Asunto(s)
Carbonato de Calcio/química , Dinoflagelados/química , Foraminíferos/química , Fósiles , Minerales/química , Análisis Espectral/métodos , Color , Dinoflagelados/ultraestructura , Foraminíferos/ultraestructura , Luminiscencia , Mediciones Luminiscentes/métodos , Óxido de Magnesio/química , Compuestos de Manganeso/química , Microscopía Electrónica de Rastreo , Óxidos/química , Especificidad de la Especie , Propiedades de Superficie , Factores de Tiempo
4.
Paleoceanogr Paleoclimatol ; 37(1): e2021PA004353, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35910494

RESUMEN

The latest Cenomanian to Santonian sedimentary record recovered at IODP Expedition 369 Site U1513 in the Mentelle Basin (SE Indian Ocean, paleolatitude 60°S at 85 Ma) is studied to interpret the paleoceanographic evolution in the Southern Hemisphere. The planktonic foraminiferal assemblage changes, the depth ecology preferences of different species, and the surface and seafloor temperature inferred from the stable isotopic values measured on foraminiferal tests provide meaningful information to the understanding of the Late Cretaceous climate. The hothouse climate during the Turonian-Santonian, characterized by weak latitudinal temperature gradients and high atmospheric CO2 concentrations, is followed by a progressive cooling during the Campanian. At Site U1513 the beginning of this climatic transition is nicely recorded within the Santonian, as indicated by an ∼1‰ increase in δ18O values of planktonic foraminifera suggesting a decline in surface water paleotemperatures of 4°C. The onset of cooling is mirrored by changes in the planktonic foraminiferal assemblages including extinctions among surface and deep dwellers, appearances and diversification of newly evolving taxa, and changes from predominantly epifaunal oxic to infaunal dysoxic/suboxic taxa among co-occurring benthic foraminifera. Overall, the data presented here document an interval in the Santonian during which the rate of southern high latitude cooling increased. Both surface and bottom waters were affected, although the cooling signal is more evident in the data for surface waters. This pattern of cooling ascribes the deterioration of the Late Cretaceous climate to decreased CO2 in the atmosphere and changes in the oceanic circulation correlated with enhanced meridional circulation.

5.
Paleoceanogr Paleoclimatol ; 37(9): e2022PA004474, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36247808

RESUMEN

Oceanic Anoxic Event 2, spanning the Cenomanian/Turonian boundary (93.9 Ma), was an episode of major perturbations in the global carbon cycle. To investigate the response of biota and the paleoceanographic conditions across this event, we present data from International Ocean Discovery Program sites U1513 and U1516 in the Mentelle Basin (offshore SW Australia; paleolatitude 59°-60°S in the mid-Cretaceous) that register the first complete records of OAE 2 at southern high latitudes. Calcareous nannofossils provide a reliable bio-chronostratigraphic framework. The distribution and abundance patterns of planktonic and benthic foraminifera, radiolaria, and calcispheres permit interpretation of the dynamics of the water mass stratification and provide support for the paleobathymetric reconstruction of the two sites, with Site U1513 located northwest of the Mentelle Basin depocenter and at a deeper depth than Site U1516. The lower OAE 2 interval is characterized by reduced water mass stratification with alternating episodes of enhanced surface water productivity and variations of the thickness of the mixed layer as indicated by the fluctuations in abundance of the intermediate dwelling planktonic foraminifera. The middle OAE 2 interval contains lithologies composed almost entirely of radiolaria reflecting extremely high marine productivity; the low CaCO3 content is consistent with marked shoaling of the Carbonate Compensation Depth and ocean acidification because of CaCO3 undersaturation. Conditions moderated after deposition of the silica-rich, CaCO3-poor rocks as reflected by the microfossil changes indicating a relatively stable water column although episodes of enhanced eutrophy did continue into the lower Turonian at Site U1516.

6.
Sci Data ; 9(1): 753, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473868

RESUMEN

Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.


Asunto(s)
Reproducibilidad de los Resultados
7.
JFMS Open Rep ; 6(2): 2055116920957196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194216

RESUMEN

CASE SUMMARY: A 7-year-old spayed female domestic shorthair cat was presented for persistent anemia of unknown origin. Splenomegaly was diagnosed through physical examination and abdominal radiographs, and an abdominal ultrasound was performed. The ultrasound showed splenomegaly, as well as one discrete mass in the body of the spleen. A splenectomy was performed and histopathology along with immunohistochemistry for CD18 and CD204 confirmed a diagnosis of hemophagocytic histiocytic sarcoma (HS). Two courses of lomustine (CCNU) chemotherapy were used in this cat along with adjuvant oral prednisolone and iron dextran injections, but the cat eventually succumbed to hepatic failure, presumed to be secondary to metastatic disease. RELEVANCE AND NOVEL INFORMATION: The clinical pathology results and ultrasonographic studies performed before and after treatment in this cat provide useful preliminary information about the biologic behavior and response to treatment for this rare cancer. This is also the first reported case where both CD18 and CD204 were strongly positive, confirming hemophagocytic HS in a cat.

8.
Science ; 370(6517)2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33154110

RESUMEN

As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation-a practice that we argue should be widely adopted.

9.
J Oncol ; 2019: 9683016, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31911803

RESUMEN

Significant progress has been made in our understanding of the molecular lesions responsible for tumor cells to exhibit uncontrolled growth while circumventing normal mechanisms of apoptosis and their ability to migrate and invade normal tissues while evading recognition and destruction by the immune system. This understanding has enabled the development of therapies specifically targeted to these lesions coupled to innovative treatment regimens to most effectively use these new targeted therapies with precision in selected subpopulations of patients. Innovation at the scientific and clinical levels has been appropriately embraced and supported at the FDA, resulting in regulatory innovation to facilitate and adapt to the Precision Medicine environment.

10.
Clin Lung Cancer ; 16(2): 92-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25458558

RESUMEN

INTRODUCTION: New treatment options are needed for second-line therapy in patients with NSCLC. PATIENTS AND METHODS: This was a phase Ib/II study in patients with nonsquamous NSCLC in whom 1 previous platinum-based chemotherapy regimen had failed. Fifteen patients were enrolled in a dose escalation of eribulin mesylate in combination with pemetrexed (E+P). In phase II (n = 80), E+P at the maximum tolerated dose was compared with P. RESULTS: In phase Ib, the maximum tolerated dose of E+P was defined as eribulin 0.9 mg/m(2) with pemetrexed (500 mg/m(2)) each on day 1 of a 21-day cycle. In phase II, adverse events were comparable between groups. PFS and OS were similar between treatment groups. Median PFS was 21.4 weeks for E+P (n = 26; 95% confidence interval [CI], 12.7-39.6) and 23.4 weeks for P (n = 29; 95% CI, 17.1-29.9), with a hazard ratio of 1.0 (95% CI, 0.6-1.7). CONCLUSION: During phase Ib, E+P was tolerated only at a markedly lower dosing intensity relative to the eribulin monotherapy regimen approved for breast cancer and used in phase II studies of NSCLC. At the selected phase II dosing regimen, E+P was generally safe and well tolerated but provided no therapeutic advantage for the second-line treatment of locally advanced or metastatic nonsquamous NSCLC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/efectos adversos , Antimetabolitos Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/patología , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Furanos/administración & dosificación , Glutamatos/administración & dosificación , Guanina/administración & dosificación , Guanina/análogos & derivados , Humanos , Cetonas/administración & dosificación , Neoplasias Pulmonares/patología , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Pemetrexed , Tasa de Supervivencia , Resultado del Tratamiento
11.
Proc Natl Acad Sci U S A ; 100(2): 599-604, 2003 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-12524455

RESUMEN

Terrestrial climates near the time of the end-Cretaceous mass extinction are poorly known, limiting understanding of environmentally driven changes in biodiversity that occurred before bolide impact. We estimate paleotemperatures for the last approximately 1.1 million years of the Cretaceous ( approximately 66.6-65.5 million years ago, Ma) by using fossil plants from North Dakota and employ paleomagnetic stratigraphy to correlate the results to foraminiferal paleoclimatic data from four middle- and high-latitude sites. Both plants and foraminifera indicate warming near 66.0 Ma, a warming peak from approximately 65.8 to 65.6 Ma, and cooling near 65.6 Ma, suggesting that these were global climate shifts. The warming peak coincides with the immigration of a thermophilic flora, maximum plant diversity, and the poleward range expansion of thermophilic foraminifera. Plant data indicate the continuation of relatively cool temperatures across the Cretaceous-Paleogene boundary; there is no indication of a major warming immediately after the boundary as previously reported. Our temperature proxies correspond well with recent pCO(2) data from paleosol carbonate, suggesting a coupling of pCO(2) and temperature. To the extent that biodiversity is correlated with temperature, estimates of the severity of end-Cretaceous extinctions that are based on occurrence data from the warming peak are probably inflated, as we illustrate for North Dakota plants. However, our analysis of climate and facies considerations shows that the effects of bolide impact should be regarded as the most significant contributor to these plant extinctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA