Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 51(17): 9075-9100, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37471042

RESUMEN

Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents.


Asunto(s)
Neoplasias , Saccharomyces cerevisiae , Humanos , Animales , Ratones , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN de Cadena Simple/genética , Mutación , Compuestos Epoxi , Mutágenos/toxicidad , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias/genética
2.
Epigenetics ; 18(1): 2088173, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35770551

RESUMEN

Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression.


Asunto(s)
Metilación de ADN , Placenta , Embarazo , Femenino , Animales , Ratones , Placenta/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Impresión Genómica , Placentación/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo
3.
Sci Rep ; 11(1): 16302, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381081

RESUMEN

Cadmium (Cd) is a ubiquitous toxic heavy metal of major public concern. Despite inefficient placental transfer, maternal Cd exposure impairs fetal growth and development. Increasing evidence from animal models and humans suggests maternal Cd exposure negatively impacts neurodevelopment; however, the underlying molecular mechanisms are unclear. To address this, we utilized multiple -omics approaches in a mouse model of maternal Cd exposure to identify pathways altered in the developing brain. Offspring maternally exposed to Cd presented with enlarged brains proportional to body weights at birth and altered behavior at adulthood. RNA-seq in newborn brains identified exposure-associated increases in Hox gene and myelin marker expression and suggested perturbed retinoic acid (RA) signaling. Proteomic analysis showed altered levels of proteins involved in cellular energy pathways, hypoxic response, and RA signaling. Consistent with transcriptomic and proteomic analyses, we identified increased levels of retinoids in maternally-exposed newborn brains. Metabolomic analyses identified metabolites with significantly altered abundance, supportive of changes to cellular energy pathways and hypoxia. Finally, maternal Cd exposure reduced mitochondrial DNA levels in newborn brains. The identification of multiple pathways perturbed in the developing brain provides a basis for future studies determining the mechanistic links between maternal Cd exposure and altered neurodevelopment and behavior.


Asunto(s)
Cadmio/toxicidad , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Transcriptoma/genética , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Femenino , Desarrollo Fetal/efectos de los fármacos , Desarrollo Fetal/genética , Humanos , Exposición Materna , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Placenta/efectos de los fármacos , Embarazo , Proteómica/métodos
4.
Sci Rep ; 9(1): 13553, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537853

RESUMEN

Cadmium (Cd) is a toxic heavy metal ubiquitous in the environment. Maternal exposure to Cd is associated with fetal growth restriction, trace element deficiencies, and congenital malformations. Cd exposure during adulthood is associated with cardiovascular disease (CVD); however, the effects of maternal Cd exposure on offspring cardiovascular development and disease are not well-understood. Utilizing a mouse model of maternal Cd exposure, we show that offspring born to Cd-exposed mothers have increased heart weights at birth and susceptibility to hypertension during adulthood. Despite inefficient maternal-fetal transfer of Cd, maternal Cd alters fetal levels of essential trace elements including a deficiency in iron, which is required for cardiovascular system development, oxygen homeostasis, and cellular metabolism. RNA-seq on newborn hearts identifies differentially expressed genes associated with maternal Cd exposure that are enriched for functions in CVD, hypertension, enlarged hearts, cellular energy, and hypoxic stress. We propose that a maternal Cd exposure-induced iron deficiency leads to altered cellular metabolic pathways and hypoxic conditions during fetal development; this stress may contribute to increased heart weight at birth and the programming of susceptibility to hypertension in adulthood. These studies will give insights into potential mechanisms through which maternal Cd exposure impacts cardiovascular development and disease.


Asunto(s)
Cadmio/efectos adversos , Redes Reguladoras de Genes/efectos de los fármacos , Corazón/anatomía & histología , Hipotensión/genética , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Hipotensión/inducido químicamente , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Análisis de Secuencia de ARN
5.
Environ Health Perspect ; 126(3): 037003, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29529597

RESUMEN

BACKGROUND: Imprinted genes are defined by their preferential expression from one of the two parental alleles. This unique mode of gene expression is dependent on allele-specific DNA methylation profiles established at regulatory sequences called imprinting control regions (ICRs). These loci have been used as biosensors to study how environmental exposures affect methylation and transcription. However, a critical unanswered question is whether they are more, less, or equally sensitive to environmental stressors as the rest of the genome. OBJECTIVES: Using cadmium exposure in humans as a model, we aimed to determine the relative sensitivity of ICRs to perturbation of methylation compared to similar, nonimprinted loci in the genome. METHODS: We assayed DNA methylation genome-wide using bisulfite sequencing of 19 newborn cord blood and 20 maternal blood samples selected on the basis of maternal blood cadmium levels. Differentially methylated regions (DMRs) associated with cadmium exposure were identified. RESULTS: In newborn cord blood and maternal blood, 641 and 1,945 cadmium-associated DMRs were identified, respectively. DMRs were more common at the 15 maternally methylated ICRs than at similar nonimprinted loci in newborn cord blood (p=5.64×10-8) and maternal blood (p=6.22×10-14), suggesting a higher sensitivity for ICRs to cadmium. Genome-wide, Enrichr analysis indicated that the top three functional categories for genes that overlapped DMRs in maternal blood were body mass index (BMI) (p=2.0×10-5), blood pressure (p=3.8×10-5), and body weight (p=0.0014). In newborn cord blood, the top three functional categories were BMI, atrial fibrillation, and hypertension, although associations were not significant after correction for multiple testing (p=0.098). These findings suggest that epigenetic changes may contribute to the etiology of cadmium-associated diseases. CONCLUSIONS: We analyzed cord blood and maternal blood DNA methylation profiles genome-wide at nucleotide resolution in individuals selected for high and low blood cadmium levels in the first trimester. Our findings suggest that ICRs may be hot spots for perturbation by cadmium, motivating further study of these loci to investigate potential mechanisms of cadmium action. https://doi.org/10.1289/EHP2085.


Asunto(s)
Cadmio/toxicidad , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/ética , Impresión Genómica/efectos de los fármacos , Femenino , Impresión Genómica/genética , Humanos , Recién Nacido , Masculino , Madres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA