RESUMEN
The Transcription Termination factor Rho is a ring-shaped, homohexameric protein that causes transcript termination by interaction with specific sites on nascent mRNAs. The process of transcription termination is essential for proper expression and regulation of bacterial genes. Although Rho has been extensively studied in the model bacteria Escherichia coli (EcRho), the properties of other Rho orthologues in other bacteria are poorly characterized. Here we present the heterologous expression and purification of untagged Rho protein from the diazotrophic environmental bacterium Azospirillum brasilense (AbRho). The AbRho protein was purified to >99% through a simple, reproducible and efficient purification protocol, a two-step chromatography procedure (affinity/gel filtration). By using analytical gel filtration and dynamic light scattering (DLS), we found that AbRho is arranged as an homohexamer as observed in the EcRho orthologue. Secondary structure and enzyme activity of AbRho was also evaluate indicating a properly folded and active protein after purification. Enzymatic assays indicate that AbRho is a RNA-dependent NTPase enzyme.
Asunto(s)
Azospirillum brasilense , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
To monitor the levels of protecting antibodies raised in the population in response to infection and/or to immunization with SARS-CoV-2, we need a technique that allows high throughput and low-cost quantitative analysis of human IgG antibodies reactive against viral antigens. Here we describe an ultra-fast, high throughput and inexpensive assay to detect SARS-CoV-2 seroconversion in humans. The assay is based on Ni2+ magnetic particles coated with His tagged SARS-CoV-2 antigens. A simple and inexpensive 96 well plate magnetic extraction/homogenization process is described which allows the simultaneous analysis of 96 samples and delivers results in 7 min with high accuracy.
Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Inmunoglobulina G/sangre , SARS-CoV-2/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Antígenos Virales/sangre , Antígenos Virales/inmunología , COVID-19/sangre , COVID-19/inmunología , Prueba Serológica para COVID-19/economía , Ensayo de Inmunoadsorción Enzimática/economía , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoglobulina G/inmunología , Imanes/química , Níquel/química , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Seroconversión , Factores de TiempoRESUMEN
Metagenome amplicon DNA sequencing and traditional cell culture techniques are helping to uncover the diversity and the biotechnological potential of prokaryotes in different habitats around the world. It has also had a profound impact on microbial taxonomy in the last decades. Here we used metagenome 16S rDNA amplicon sequencing to reveal the microbiome composition of different layers of an anthropogenic soil collected at a shell mound Sambaqui archeological site. The Samabaqui soil microbiome is mainly composed by phyla Acidobacteria, Rokubacteria, Proteobacteria and Thaumarchaeota. Using culture-dependent analysis we obtained few Streptomyces isolates from the Sambaqui soil. One of the isolates, named Streptomyces sp. S3, was able to grow in minimal medium containing recalcitrant polysaccharides including chitin, xylan, carboxymethylcellulose or microcrystalline cellulose as sole carbon sources. The activities of enzymes degrading these compounds were confirmed in cell free supernatants. The genome sequence revealed not only an arsenal of genes related to polysaccharides degradation but also biosynthetic gene clusters which may be involved in the production of biotechnologically interesting secondary metabolites.
Asunto(s)
Microbiota , Polisacáridos/metabolismo , Microbiología del Suelo , Streptomyces/metabolismo , Archaea , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Biotecnología , Brasil , Carbono/metabolismo , Carboximetilcelulosa de Sodio , Celulosa , Quitina , ADN Ribosómico , Hidrolasas , Metagenoma , Proteobacteria , ARN Ribosómico 16S/genética , Análisis de Secuencia , Análisis de Secuencia de ADN , Suelo/química , Streptomyces/genética , Streptomyces/aislamiento & purificación , Xilanos/metabolismoRESUMEN
Azospirillum brasilense is a diazotrophic microorganism capable of associating with roots of important grasses and cereals, promoting plant growth and increasing crop yields. Nitrogen levels and the Ntr regulatory system control the nitrogen metabolism in A. brasilense. This system comprises the nitrogen regulatory proteins GlnD, which is capable of adding uridylyl groups to the PII proteins, GlnB (PII-1) and GlnZ (PII-2), under limiting nitrogen levels. Under such conditions, the histidine kinase NtrB (nitrogen regulatory protein B) cannot interact with GlnB and phosphorylate NtrC (nitrogen regulatory protein C). The phosphorylated form of NtrC acts as a transcriptional activator of genes involved in the metabolism of alternative nitrogen sources. Considering the key role of NtrC in nitrogen metabolism in A. brasilense, in this work we evaluated the proteomic and metabolomic profiles of the wild-type FP2 strain and its mutant ntrC grown under high and low nitrogen. Analysis of the integrated data identifies novel NtrC targets, including proteins involved in the response against oxidative stress (i.e., glutathione S-transferase and hydroperoxide resistance protein), underlining the importance of NtrC to bacterial survival under oxidative stress conditions.
Asunto(s)
Azospirillum brasilense , Proteómica , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Fijación del Nitrógeno , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismoRESUMEN
Nitrogen is needed for the biosynthesis of biomolecules including proteins and nucleic acids. In the absence of fixed nitrogen prokaryotes such as E. coli immediately ceases growth. Ammonium is the preferred nitrogen source for E. coli supporting the fastest growth rates. Under conditions of ammonium limitation, E. coli can use alternative nitrogen sources to supply ammonium ions and this reprogramming is led by the induction of the NtrC regulon. Here we used label free proteomics to determine the dynamics of E. coli proteins expression in response to ammonium starvation in both the short (30min) and the longer (60min) starvation. Protein abundances and post-translational modifications confirmed that activation of the NtrC regulon acts as the first line of defense against nitrogen starvation. The ribosome inactivating protein Rmf was induced shortly after ammonium exhaustion and this was preceded by induction of other ribosome inactivating proteins such as Hpf and RaiA supporting the hypothesis that ribosome shut-down is a key process during nitrogen limitation stress. The proteomic data revealed that growth arrest due to nitrogen starvation correlates with the accumulation of proteins involved in DNA condensation, RNA and protein catabolism and ribosome hibernation. Collectively, these proteome adaptations will result in metabolic inactive cells which are likely to exhibit multidrug tolerance.
Asunto(s)
Escherichia coli/metabolismo , Nitrógeno/metabolismo , Proteoma/metabolismo , Compuestos de Amonio/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteómica/métodos , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismoRESUMEN
Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate-limiting step in fatty acid biosynthesis is catalyzed by a multi-subunit form of the acetyl-CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl-CoA to produce malonyl-CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC-BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC-BCCP-GlnB interaction and ACC inhibition were relieved by 2-oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2-oxoglutarate-sensitive dissociable regulatory subunit of ACC in Bacteria.
Asunto(s)
Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos/biosíntesis , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Azospirillum brasilense/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Transducción de SeñalRESUMEN
Iron is an essential micronutrient for living organisms as it is involved in a broad variety of important biological processes. However, free iron inside the cell could be potentially toxic, generating hydroxyl radicals through the Fenton reaction. Dps (DNA-binding protein from starved cells) belongs to a subfamily of ferritins and can store iron atoms inside the dodecamer. The presence of a ferroxidase centre, composed of highly conserved residues, is a signature of this protein family. In this study, we analysed the role of two conserved histidine residues (H25 and H37) located at the ferroxidase centre of the Campylobacter jejuni Dps protein by replacing them with glycine residues. The C. jejuni H25G/H37G substituted variant showed reduced iron binding and ferroxidase activities in comparison with wt Dps, while DNA-binding activity remained unaffected. We also found that both CjDps wt and CjDps H25G/H37G were able to bind manganese atoms. These results indicate that the H25 and H37 residues at the ferroxidase centre of C. jejuni Dps are not strictly required for metal binding and oxidation.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/enzimología , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Histidina/metabolismo , Hierro/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Campylobacter jejuni/química , Campylobacter jejuni/genética , Ceruloplasmina/genética , Secuencia Conservada , Histidina/química , Histidina/genética , Cinética , Datos de Secuencia Molecular , Oxidación-ReducciónRESUMEN
Posttranslational modification of proteins plays a key role in the regulation of a plethora of metabolic functions. Protein modification by mono-ADP-ribosylation was first described as a mechanism of action of bacterial toxins. Since these pioneering studies, the number of pathways regulated by ADP-ribosylation in organisms from all domains of life expanded significantly. However, in only a few cases the full regulatory ADP-ribosylation circuit is known. Here, we review the system where mono-ADP-ribosylation regulates the activity of an enzyme: the regulation of nitrogenase in bacteria. When the nitrogenase product, ammonium, becomes available, the ADP-ribosyltransferase (DraT) covalently links an ADP-ribose moiety to a specific arginine residue on nitrogenase switching-off nitrogenase activity. After ammonium exhaustion, the ADP-ribosylhydrolase (DraG) removes the modifying group, restoring nitrogenase activity. DraT and DraG activities are reversibly regulated through interaction with PII signaling proteins . Bioinformatics analysis showed that DraT homologs are restricted to a few nitrogen-fixing bacteria while DraG homologs are widespread in Nature. Structural comparisons indicated that bacterial DraG is closely related to Archaea and mammalian ADP-ribosylhydrolases (ARH). In all available structures, the ARH active site consists of a hydrophilic cleft carrying a binuclear Mg(2+) or Mn(2+) cluster, which is critical for catalysis.
Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Eucariontes/enzimología , Nitrogenasa/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Animales , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Eucariontes/química , Eucariontes/genética , Regulación Enzimológica de la Expresión Génica , Humanos , Nitrogenasa/química , Nitrogenasa/genética , Procesamiento Proteico-PostraduccionalRESUMEN
Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.
Asunto(s)
Amida Sintasas/aislamiento & purificación , Amida Sintasas/metabolismo , Herbaspirillum/enzimología , Cromatografía en Gel , Glutamina/metabolismo , Cinética , NAD/análogos & derivados , NAD/biosíntesis , NAD/metabolismo , Nitrógeno/metabolismoRESUMEN
The PII family comprises a group of widely distributed signal transduction proteins. The archetypal function of PII is to regulate nitrogen metabolism in bacteria. As PII can sense a range of metabolic signals, it has been suggested that the number of metabolic pathways regulated by PII may be much greater than described in the literature. In order to provide experimental evidence for this hypothesis a PII protein affinity column was used to identify PII targets in Azospirillum brasilense. One of the PII partners identified was the biotin carboxyl carrier protein (BCCP), a component of the acetyl-CoA carboxylase which catalyses the committed step in fatty acid biosynthesis. As BCCP had been previously identified as a PII target in Arabidopsis thaliana we hypothesized that the PII -BCCP interaction would be conserved throughout Bacteria. In vitro experiments using purified proteins confirmed that the PII -BCCP interaction is conserved in Escherichia coli. The BCCP-PII interaction required MgATP and was dissociated by increasing 2-oxoglutarate. The interaction was modestly affected by the post-translational uridylylation status of PII ; however, it was completely dependent on the post-translational biotinylation of BCCP.
Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Azospirillum brasilense/enzimología , Proteínas Bacterianas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/enzimología , Escherichia coli/enzimología , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Cetoglutáricos/metabolismo , Unión Proteica , Mapeo de Interacción de ProteínasRESUMEN
Dps proteins (DNA binding protein from starved cell) form a distinct group within the ferritin superfamily. All Dps members are composed of 12 identical subunits that assemble into a conserved spherical protein shell. Dps oxidize Fe(2+) in a conserved ferroxidase center located at the interface between monomers, the product of the reaction Fe(3+), is then stored inside the protein shell in the form of non-reactive insoluble Fe2O3. The Campylobacter jejuni Dps (CjDps) has been reported to play a plethora of functions, such as DNA binding and protection, iron storage, survival in response to hydrogen peroxide and sulfatide binding. CjDps is also important during biofilm formation and caecal colonization in poultry. In order to facilitate in vitro characterisation of CjDps, it is important to have a simple and reproducible protocol for protein purification. Here we report an observation that CjDps has an unusual high melting temperature. We exploited this property for protein purification by introducing a thermal treatment step which allowed achieving homogeneity by using only two chromatographic steps. Gel filtration chromatography, circular dichroism, mass spectrometry, DNA-binding and iron oxidation analysis confirmed that the CjDps structure and function were unaffected.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Campylobacter jejuni/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , CalorRESUMEN
Nitrogen metabolism in bacteria and archaea is regulated by a ubiquitous class of proteins belonging to the P(II)family. P(II) proteins act as sensors of cellular nitrogen, carbon, and energy levels, and they control the activities of a wide range of target proteins by protein-protein interaction. The sensing mechanism relies on conformational changes induced by the binding of small molecules to P(II) and also by P(II) posttranslational modifications. In the diazotrophic bacterium Azospirillum brasilense, high levels of extracellular ammonium inactivate the nitrogenase regulatory enzyme DraG by relocalizing it from the cytoplasm to the cell membrane. Membrane localization of DraG occurs through the formation of a ternary complex in which the P(II) protein GlnZ interacts simultaneously with DraG and the ammonia channel AmtB. Here we describe the crystal structure of the GlnZ-DraG complex at 2.1 Å resolution, and confirm the physiological relevance of the structural data by site-directed mutagenesis. In contrast to other known P(II) complexes, the majority of contacts with the target protein do not involve the T-loop region of P(II). Hence this structure identifies a different mode of P(II) interaction with a target protein and demonstrates the potential for P(II) proteins to interact simultaneously with two different targets. A structural model of the AmtB-GlnZ-DraG ternary complex is presented. The results explain how the intracellular levels of ATP, ADP, and 2-oxoglutarate regulate the interaction between these three proteins and how DraG discriminates GlnZ from its close paralogue GlnB.
Asunto(s)
Azospirillum brasilense/enzimología , Proteínas Bacterianas/química , Modelos Moleculares , Complejos Multiproteicos/química , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Conformación Proteica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/fisiología , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Cristalización , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Nitrogenasa/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Compuestos de Amonio Cuaternario/metabolismoRESUMEN
PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways. In some organisms, PII proteins can also control carbon metabolism by interacting with the biotin carboxyl carrier protein (BCCP), a key component of the acetyl-CoA carboxylase (ACC) enzyme complex, inhibiting its activity with the consequent reduction of fatty acid biosynthesis. Most bacteria contain at least two PII proteins, named GlnB and GlnK, with different regulatory roles. In mycobacteria, only one PII protein was identified, and the three-dimensional structure was solved, however, its physiological role is unknown. In this study we purified the Mycobacterium tuberculosis (M. tb) PII protein, named GlnB, and showed that it weakly interacts with the AccA3 protein, the α subunit shared by the three different, and essential, Acyl-CoA carboxylase complexes (ACCase 4, 5, and 6) present in M. tb. A M. smegmatis deletion mutant, ∆MsPII, exhibited a growth deficiency on nitrate and nitrite as unique nitrogen sources, and accumulated nitrite in the culture supernatant. In addition, M. tb PII protein was able to interact with the C-terminal domain of the ammonium transporter Amt establishing the ancestral role for this PII protein as a GlnK functioning protein.
RESUMEN
(1) Background: After the COVID-19 pandemic, there is concern regarding the immunity of the population to SARS-CoV-2 variants, particularly the Omicron variant and its sub-lineages. (2) Methods: The study involved analyzing the immune response and symptomatology of 27 vaccinated individuals who were subsequently infected by Omicron sub-lineages. Blood samples were collected for serological analysis, including the detection of IgG antibodies reactive to the Nucleocapsid (N) and Spike (S) antigens of SARS-CoV-2. Additionally, participants were interviewed to assess the intensity of symptoms during the infection. (3) Results: Despite the high levels of anti-Spike IgG observed after vaccination, all participants were infected by Omicron sub-lineages. The most common symptoms reported by participants were fever or chills, sore throat, and cough. The levels of anti-Spike IgG found prior to infection did not correlate with symptom intensity post-infection. However, it was observed that high post-infection anti-Nucleocapsid IgG levels correlated with mild symptoms during the course of the disease, suggesting a potential role for anti-N antibodies in symptom intensity. (4) Conclusions: In line with previous studies, the high levels of IgG anti-Spike resulting from vaccination did not provide complete protection against infection by the Omicron variant. Additionally, our data suggest that anti-Nucleocapsid IgG titers are negatively correlated with the intensity of the symptoms during mild infections.
RESUMEN
Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity that is uniquely activated by Fe(2+) or H2O2 at below neutral pH. The Dps-DNA binding activity correlated with the ability of Dps to self-aggregate. The Dps-DNA interaction was inhibited by NaCl and Mg(2+), suggesting the formation of ionic interactions between Dps and DNA. Alkylation of cysteines affected DNA binding in the presence of H2O2 but not in the presence of Fe(2+). Replacement of all cysteines in C. jejuni Dps with serines did not affect DNA binding, excluding the participation of cysteine in H2O2 sensing. Dps was able to protect DNA in vitro from enzymatic cleavage and damage by hydroxyl radicals. A C. jejuni dps mutant was less resistant to H2O2 in vivo. The concerted activation of Dps-DNA binding in response to low pH, H2O2, and Fe(2+) may protect C. jejuni DNA during host colonization.
Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Proteínas Bacterianas/genética , Campylobacter jejuni/genética , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Ferritinas/genética , Ferritinas/metabolismo , Unión ProteicaRESUMEN
Fe protein (dinitrogenase reductase) activity is reversibly inactivated by dinitrogenase reductase ADP-ribosyltransferase (DraT) in response to an increase in the ammonium concentration or a decrease in cellular energy in Azospirillum brasilense, Rhodospirillum rubrum, and Rhodobacter capsulatus. The ADP-ribosyl is removed by the dinitrogenase reductase-activating glycohydrolase (DraG), promoting Fe protein reactivation. The signaling pathway leading to DraT activation by ammonium is still not completely understood, but the available evidence shows the involvement of direct interaction between the enzyme and the nitrogen-signaling P(II) proteins. In A. brasilense, two P(II) proteins, GlnB and GlnZ, were identified. We used Fe protein from Azotobacter vinelandii as the substrate to assess the activity of A. brasilense DraT in vitro complexed or not with P(II) proteins. Under our conditions, GlnB was necessary for DraT activity in the presence of Mg-ADP. The P(II) effector 2-oxoglutarate, in the presence of Mg-ATP, inhibited DraT-GlnB activity, possibly by inducing complex dissociation. DraT was also activated by GlnZ and by both uridylylated P(II) proteins, but not by a GlnB variant carrying a partial deletion of the T loop. Kinetics studies revealed that the A. brasilense DraT-GlnB complex was at least 18-fold more efficient than DraT purified from R. rubrum, but with a similar K(m) value for NAD(+). Our results showed that ADP-ribosylation of the Fe protein does not affect the electronic state of its metal cluster and prevents association between the Fe and MoFe proteins, thus inhibiting electron transfer.
Asunto(s)
ADP Ribosa Transferasas/metabolismo , Azospirillum brasilense/enzimología , Proteínas Bacterianas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , ADP Ribosa Transferasas/aislamiento & purificación , Adenosina Difosfato/metabolismo , Azotobacter vinelandii/enzimología , Coenzimas , Inhibidores Enzimáticos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Magnesio/metabolismo , NAD/metabolismo , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Unión ProteicaRESUMEN
The ammonium transport family Amt/Rh comprises ubiquitous integral membrane proteins that facilitate ammonium movement across biological membranes. Besides their role in transport, Amt proteins also play a role in sensing the levels of ammonium in the environment, a process that depends on complex formation with cytosolic proteins of the P(II) family. Trimeric P(II) proteins from a variety of organisms undergo a cycle of reversible posttranslational modification according to the prevailing nitrogen supply. In proteobacteria, P(II) proteins are subjected to reversible uridylylation of each monomer. In this study we used the purified proteins from Azospirillum brasilense to analyze the effect of P(II) uridylylation on the protein's ability to engage complex formation with AmtB in vitro. Our results show that partially uridylylated P(II) trimers can interact with AmtB in vitro, the implication of this finding in the regulation of nitrogen metabolism is discussed. We also report an improved expression and purification protocol for the A. brasilense AmtB protein that might be applicable to AmtB proteins from other organisms.
Asunto(s)
Azospirillum brasilense/química , Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Nitrógeno/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Uridina Monofosfato/químicaRESUMEN
The fixation of atmospheric nitrogen by the prokaryotic enzyme nitrogenase is an energy- expensive process and consequently it is tightly regulated at a variety of levels. In many diazotrophs this includes post-translational regulation of the enzyme's activity, which has been reported in both bacteria and archaea. The best understood response is the short-term inactivation of nitrogenase in response to a transient rise in ammonium levels in the environment. A number of proteobacteria species effect this regulation through reversible ADP-ribosylation of the enzyme, but other prokaryotes have evolved different mechanisms. Here we review current knowledge of post-translational control of nitrogenase and show that, for the response to ammonium, the P(II) signal transduction proteins act as key players.
Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Nitrogenasa/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Transducción de Señal , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Nitrogenasa/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Procesamiento Proteico-PostraduccionalRESUMEN
Proteins belonging to the P(II) family coordinate cellular nitrogen metabolism by direct interaction with a variety of enzymes, transcriptional regulators and transporters. The sensing function of P(II) relies on its ability to bind the nitrogen/carbon signalling molecule 2-oxoglutarate (2-OG). In Proteobacteria, P(II) is further subject to reversible uridylylation according to the intracellular levels of glutamine, which reflect the cellular nitrogen status. A number of P(II) proteins have been shown to bind ADP and ATP in a competitive manner, suggesting that P(II) might act as an energy sensor. Here, we analyse the influence of the ADP/ATP ratio, 2-OG levels and divalent metal ions on in vitro uridylylation of the Azospirillum brasilense P(II) proteins GlnB and GlnZ, and on interaction with their targets AmtB, DraG and DraT. The results support the notion that the cellular concentration of 2-OG is a key factor governing occupation of the GlnB and GlnZ nucleotide binding sites by ATP or ADP, with high 2-OG levels favouring the occupation of P(II) by ATP. Both P(II) uridylylation and interaction with target proteins responded to the ADP/ATP ratio within the expected physiological range, supporting the concept that P(II) proteins might act as cellular energy sensors.
Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/metabolismo , Cationes Bivalentes/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Azospirillum brasilense/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas PII Reguladoras del Nitrógeno/genética , Transducción de SeñalRESUMEN
PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.