Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Neurochem Res ; 44(1): 89-101, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29397534

RESUMEN

Glutamate dysfunction has been implicated in a number of substance of abuse studies, including cocaine and methamphetamine. Moreover, in attention-deficit/hyperactivity disorder (ADHD), it has been discovered that when the initiation of stimulant treatment occurs during adolescence, there is an increased risk of developing a substance use disorder later in life. The spontaneously hypertensive rat (SHR) serves as a phenotype for ADHD and studies have found increased cocaine self-administration in adult SHRs when treated with the stimulant methylphenidate (MPH) during adolescence. For this reason, we wanted to examine glutamate signaling in the pre-limbic frontal cortex, a region implicated in ADHD and drug addiction, in the SHR and its progenitor control strain, the Wistar Kyoto (WKY). We chronically implanted glutamate-selective microelectrode arrays (MEAs) into 8-week-old animals and treated with MPH (2 mg/kg, s.c.) for 11 days while measuring tonic and phasic extracellular glutamate concentrations. We observed that intermediate treatment with a clinically relevant dose of MPH increased tonic glutamate levels in the SHR but not the WKY compared to vehicle controls. After chronic treatment, both the SHR and WKY exhibited increased tonic glutamate levels; however, only the SHR was found to have decreased amplitudes of phasic glutamate signaling following chronic MPH administration. The findings from this study suggest that the MPH effects on extracellular glutamate levels in the SHR may potentiate the response for drug abuse later in life. Additionally, these data illuminate a pathway for investigating novel therapies for the treatment of ADHD and suggest that possibly targeting the group II metabotropic glutamate receptors may be a useful therapeutic avenue for adolescents diagnosed with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Estimulantes del Sistema Nervioso Central/administración & dosificación , Modelos Animales de Enfermedad , Lóbulo Frontal/metabolismo , Ácido Glutámico/metabolismo , Metilfenidato/administración & dosificación , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Estimulantes del Sistema Nervioso Central/toxicidad , Esquema de Medicación , Electrodos Implantados , Lóbulo Frontal/efectos de los fármacos , Masculino , Metilfenidato/toxicidad , Movimiento/efectos de los fármacos , Movimiento/fisiología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Especificidad de la Especie
2.
Epilepsia ; 55(11): 1817-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25266171

RESUMEN

OBJECTIVE: Characterize glutamate neurotransmission in the hippocampus of awake-behaving rodents during focal seizures in a model of aging. METHODS: We used enzyme-based ceramic microelectrode array technology to measure in vivo extracellular tonic glutamate levels and real-time phasic glutamate release and clearance events in the hippocampus of awake Fischer 344 rats. Local application of 4-aminopyridine (4-AP) into the CA1 region was used to induce focal motor seizures in different animal age groups representing young, late-middle aged and elderly humans. RESULTS: Rats with the highest preseizure tonic glutamate levels (all in late-middle aged or elderly groups) experienced the most persistent 4-AP-induced focal seizure motor activity (wet dog shakes) and greatest degree of acute seizure-associated disruption of glutamate neurotransmission measured as rapid transient changes in extracellular glutamate levels. SIGNIFICANCE: Increased seizure susceptibility was demonstrated in the rats with the highest baseline hippocampal extracellular glutamate levels, all of which were late-middle aged or aged animals. The manifestation of seizures behaviorally was associated with dynamic changes in glutamate neurotransmission. To our knowledge, this is the first report of a relationship between seizure susceptibility and alterations in both baseline tonic and phasic glutamate neurotransmission.


Asunto(s)
Envejecimiento/fisiología , Región CA1 Hipocampal/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Convulsiones/metabolismo , 4-Aminopiridina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Región CA1 Hipocampal/efectos de los fármacos , Masculino , Ratas Endogámicas F344 , Convulsiones/inducido químicamente , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
3.
J Neurochem ; 122(3): 619-27, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22578190

RESUMEN

The potential anxiolytic effects of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor subgroup 2 (mGluR2) were investigated using a self-referencing recording technique with enzyme-based microelectrode arrays (MEAs) that reliably measures tonic and phasic changes in extracellular glutamate levels in awake rats. Studies involved glutamate measures in the rat prefrontal cortex during subcutaneous injections of the following: vehicle, a mGluR2/3 agonist, LY354740 (10 mg/kg), or a mGluR2 PAM, 1-Methyl-2-((cis-(R,R)-3-methyl-4-(4-trifluoromethoxy-2-fluoro)phenyl)piperidin-1-yl)methyl)-1H-imidazo[4,5-b]pyridine ((+)-TFMPIP; 1.0 or 17.8 mg/kg). Studies assessed changes in tonic glutamate levels and the glutamatergic responses to a 5-min restraint stress. Subcutaneous injection of (+)-TFMPIP at a dose of 1.0 mg/kg (day 3: -7.1 ± 15.1 net AUC; day 5: -24.8 ± 24.9 net AUC) and 17.8 mg/kg (day 3: -46.5 ± 33.0 net AUC; day 5: 34.6 ± 36.8 net AUC) significantly attenuated the stress-evoked glutamate release compared to vehicle controls (day 3: 134.7 ± 50.6 net AUC; day 5: 286.6 ± 104.5 net AUC), whereas the mGluR2/3 agonist LY354740 had no effect. None of the compounds significantly affected resting glutamate levels, which we have recently shown to be extensively derived from neurons. Taken together, these data support that systemic administration of (+)-TFMPIP produces phasic rather than tonic release of glutamate that may play a major role in the effects of stress on glutamate neuronal systems in the prefrontal cortex.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ácido Glutámico/metabolismo , Piperidinas/farmacología , Corteza Prefrontal/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Restricción Física/fisiología , Regulación Alostérica , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Compuestos Bicíclicos con Puentes/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Masculino , Microelectrodos , Ratas , Ratas Sprague-Dawley , Restricción Física/métodos , Vigilia
4.
J Pharmacol Exp Ther ; 338(1): 240-5, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21464332

RESUMEN

Gabapentin (GBP; Neurontin) and pregabalin (PGB; Lyrica, S-(+)-3-isobutylgaba) are used clinically to treat several disorders associated with excessive or inappropriate excitability, including epilepsy; pain from diabetic neuropathy, postherpetic neuralgia, and fibromyalgia; and generalized anxiety disorder. The molecular basis for these drugs' therapeutic effects are believed to involve the interaction with the auxiliary α(2)δ subunit of voltage-sensitive Ca(2+) channel (VSCC) translating into a modulation of pathological neurotransmitter release. Glutamate as the primary excitatory neurotransmitter in the mammalian central nervous system contributes, under conditions of excessive glutamate release, to neurological and psychiatric disorders. This study used enzyme-based microelectrode arrays to directly measure extracellular glutamate release in rat neocortical slices and determine the modulation of this release by GBP and PGB. Both drugs attenuated K(+)-evoked glutamate release without affecting basal glutamate levels. PGB (0.1-100 µM) exhibited concentration-dependent inhibition of K(+)-evoked glutamate release with an IC(50) value of 5.3 µM. R-(-)-3-Isobutylgaba, the enantiomer of PGB, did not significantly reduce K(+)-evoked glutamate release. The decrease of K(+)-evoked glutamate release by PGB was blocked by the l-amino acid l-isoleucine, a potential endogenous ligand of the α(2)δ subunit. In neocortical slices from transgenic mice having a point mutation (i.e., R217A) of the α(2)δ-1 (subtype) subunit of VSCC, PGB did not affect K(+)-evoked glutamate release yet inhibited this release in wild-type mice. The results show that GBP and PGB attenuated stimulus-evoked glutamate release in rodent neocortical slices and that the α(2)δ-1 subunit of VSCC appears to mediate this effect.


Asunto(s)
Aminas/farmacología , Canales de Calcio/fisiología , Ácidos Ciclohexanocarboxílicos/farmacología , Ácido Glutámico/metabolismo , Neocórtex/metabolismo , Ácido gamma-Aminobutírico/análogos & derivados , Animales , Canales de Calcio/genética , Canales de Calcio Tipo L , Gabapentina , Ácido Glutámico/fisiología , Humanos , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Microelectrodos , Neocórtex/efectos de los fármacos , Mutación Puntual , Pregabalina , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/farmacología
5.
J Neurochem ; 115(6): 1608-20, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20969570

RESUMEN

Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal versus astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (sodium channel blocker), produced a significant (∼ 40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally applied ω-conotoxin (MVIIC; ∼ 50%; calcium channel blocker), and the mGluR(2/3) agonist, LY379268 (∼ 20%), and a significant increase with the mGluR(2/3) antagonist LY341495 (∼ 40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-ß-benzyloxyaspartate (glutamate transporter inhibitor) produced an ∼ 120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of tetrodotoxin completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the microelectrode array technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically -evoked event is entirely neuronally derived.


Asunto(s)
Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Espacio Extracelular/efectos de los fármacos , Masculino , Microdiálisis/métodos , Microelectrodos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Long-Evans , Bloqueadores de los Canales de Sodio/farmacología , Factores de Tiempo
6.
J Neurosci Methods ; 329: 108435, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31600528

RESUMEN

BACKGROUND: Although GABA is the major inhibitory neurotransmitter in the CNS, quantifying in vivo GABA levels has been challenging. The ability to co-monitor both GABA and the major excitatory neurotransmitter, glutamate, would be a powerful tool in both research and clinical settings. NEW METHOD: Ceramic-based microelectrode arrays (MEAs) were used to quantify gamma-aminobutyric acid (GABA) by employing a dual-enzyme reaction scheme including GABase and glutamate oxidase (GluOx). Glutamate was simultaneously quantified on adjacent recording sites coated with GluOx alone. Endogenous glutamate was subtracted from the combined GABA and glutamate signal to yield a pure GABA concentration. RESULTS: Electrode sensitivity to GABA in conventional, stirred in vitro calibrations at pH 7.4 did not match the in vivo sensitivity due to diffusional losses. Non-stirred calibrations in agarose or stirred calibrations at pH 8.6 were used to match the in vivo GABA sensitivity. In vivo data collected in the rat brain demonstrated feasibility of the GABA/glutamate MEA including uptake of locally applied GABA, KCl-evoked GABA release and modulation of endogenous GABA with vigabatrin. COMPARISON WITH EXISTING METHODS: Implantable enzyme-coated microelectrode arrays have better temporal and spatial resolution than existing off-line methods. However, interpretation of results can be complicated due to the multiple recording site and dual enzyme approach. CONCLUSIONS: The initial in vitro and in vivo studies supported that the new MEA configuration may be a viable platform for combined GABA and glutamate measures in the CNS extending the previous reports to in vivo GABA detection. The challenges of this approach are emphasized.


Asunto(s)
Química Encefálica/fisiología , Electroquímica/normas , Electrodos Implantados , Ácido Glutámico/metabolismo , Microelectrodos , Ácido gamma-Aminobutírico/metabolismo , 4-Aminobutirato Transaminasa , Aldehído Oxidorreductasas , Aminoácido Oxidorreductasas , Animales , Cerámica , Electroquímica/instrumentación , Electroquímica/métodos , Estudios de Factibilidad , Masculino , Ratas , Ratas Endogámicas F344
7.
Cell Transplant ; 29: 963689720926157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425114

RESUMEN

The development of regenerative therapies for central nervous system diseases can likely benefit from an understanding of the peripheral nervous system repair process, particularly in identifying potential gene pathways involved in human nerve repair. This study employed RNA sequencing (RNA-seq) technology to analyze the whole transcriptome profile of the human peripheral nerve in response to an injury. The distal sural nerve was exposed, completely transected, and a 1 to 2 cm section of nerve fascicles was collected for RNA-seq from six participants with Parkinson's disease, ranging in age between 53 and 70 yr. Two weeks after the initial injury, another section of the nerve fascicles of the distal and pre-degenerated stump of the nerve was dissected and processed for RNA-seq studies. An initial analysis between the pre-lesion status and the postinjury gene expression revealed 3,641 genes that were significantly differentially expressed. In addition, the results support a clear transdifferentiation process that occurred by the end of the 2-wk postinjury. Gene ontology (GO) and hierarchical clustering were used to identify the major signaling pathways affected by the injury. In contrast to previous nonclinical studies, important changes were observed in molecular pathways related to antiapoptotic signaling, neurotrophic factor processes, cell motility, and immune cell chemotactic signaling. The results of our current study provide new insights regarding the essential interactions of different molecular pathways that drive neuronal repair and axonal regeneration in humans.


Asunto(s)
Regeneración Nerviosa/genética , Traumatismos de los Nervios Periféricos/genética , Análisis de Secuencia de ARN/métodos , Anciano , Humanos , Persona de Mediana Edad
8.
Epilepsy Res ; 159: 106244, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816591

RESUMEN

BACKGROUND: Genesis of acquired epilepsy includes transformations spanning genetic-to- network-level modifications, disrupting the regional excitatory/inhibitory balance. Methodology concurrently tracking changes at multiple levels is lacking. Here, viral vectors are used to differentially express two opsin proteins in neuronal populations within dentate gyrus (DG) of hippocampus. When activated, these opsins induced excitatory or inhibitory neural output that differentially affected neural networks and epileptogenesis. In vivo measures included behavioral observation coupled to real-time measures of regional glutamate flux using ceramic-based amperometric microelectrode arrays (MEAs). RESULTS: Using MEA technology, phasic increases of extracellular glutamate were recorded immediately upon application of blue light/488 nm to DG of rats previously transfected with an AAV 2/5 vector containing an (excitatory) channelrhodopsin-2 transcript. Rats receiving twice-daily 30-sec light stimulation to DG ipsilateral to viral transfection progressed through Racine seizure stages. AAV 2/5 (inhibitory) halorhodopsin-transfected rats receiving concomitant amygdalar kindling and DG light stimuli were kindled significantly more slowly than non-stimulated controls. In in vitro slice preparations, both excitatory and inhibitory responses were independently evoked in dentate granule cells during appropriate light stimulation. Latency to response and sensitivity of responses suggest a degree of neuron subtype-selective functional expression of the transcripts. CONCLUSIONS: This study demonstrates the potential for coupling MEA technology and optogenetics for real-time neurotransmitter release measures and modification of seizure susceptibility in animal models of epileptogenesis. This microelectrode/optogenetic technology could prove useful for characterization of network and system level dysfunction in diseases involving imbalanced excitatory/inhibitory control of neuron populations and guide development of future treatment strategies.


Asunto(s)
Epilepsia/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Red Nerviosa/metabolismo , Animales , Electrodos Implantados , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Masculino , Red Nerviosa/fisiopatología , Neuronas/metabolismo , Optogenética , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
9.
Synapse ; 63(12): 1069-82, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19637277

RESUMEN

These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the alpha 7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intracortical infusions of the nonselective nicotinic agonist nicotine (12.0 mM, 1.0 microg/0.4 microl) or the selective alpha 7 agonist choline (2.0 mM/0.4 microl). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pretreated with the alpha 7 antagonist, alpha-bungarotoxin (alpha-BGT, 10 microM), or kynurenine (10 microM) the precursor of the astrocyte-derived, negative allosteric alpha 7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 +/- 0.6 microM) that were cleared to baseline levels in 493 +/- 80 seconds. Pretreatment with alpha-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 +/- 0.9 microM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 +/- 6 seconds) and pretreatment with alpha-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both alpha 7- and non-alpha 7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on alpha 7 full and partial agonists as therapeutic agents in the treatment of cortically mediated cognitive deficits in schizophrenia.


Asunto(s)
Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Bungarotoxinas/farmacología , Calibración , Cateterismo , Colina/farmacología , Electrodos Implantados , Quinurenina/farmacología , Masculino , Microelectrodos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Ratas , Ratas Wistar , Factores de Tiempo , Receptor Nicotínico de Acetilcolina alfa 7
10.
Neuropharmacology ; 147: 28-36, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29857941

RESUMEN

Parkinson's disease (PD) is a disorder affecting dopamine neurons for which there is no cure. Glial cell line-derived neurotrophic factor (GDNF) and the closely related protein neurturin are two trophic factors with demonstrated neuroprotective and neurorestorative properties on dopamine neurons in multiple animal species. However, GDNF and neurturin Phase-2 clinical trials have failed to demonstrate a significant level of improvement over placebo controls. Insufficient drug distribution in the brain parenchyma has been proposed as a major contributing factor for the lack of clinical efficacy in the Phase-2 trial patients. To address this issue, a novel mammalian cell-derived variant form of GDNF (GDNFv) was designed to promote better tissue distribution by reducing its heparin binding to the extracellular matrix and key amino acids were substituted to enhance its chemical stability. Administration of this fully glycosylated GDNFv in the normal rat striatum increased dopamine turnover and produced significantly greater brain distribution than E. coli-produced wildtype GDNF (GDNFwt). Intrastriatal GDNFv also protected midbrain dopamine neuron function in 6-hydroxydopamine-lesioned rats. Studies conducted in normal adult rhesus macaques support that GDNFv was well tolerated in all animals and demonstrated a greater volume of distribution than GDNFwt in the brain following intrastriatal infusion. Importantly, favorable physiological activity of potential therapeutic value was maintained in this variant trophic factor with significant target activation in GDNFv recipients as indicated by dopamine turnover modulation. These data suggest that GDNFv may be a promising drug candidate for the treatment of PD. Additional studies are needed in non-human primates with dopamine depletion. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Neurturina/farmacología , Animales , Encéfalo/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacocinética , Humanos , Macaca mulatta , Neurturina/farmacocinética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Distribución Tisular
11.
Methods Enzymol ; 441: 351-67, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18554545

RESUMEN

During the last two decades nitric oxide (.NO) gas has emerged as a novel and ubiquitous intercellular modulator of cell functions. In the brain, .NO is implicated in mechanisms of synaptic plasticity but it is also involved in cell death pathways underlying several neurological diseases. Because of its hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of .NO concentration changes are critical determinants for the understanding of its diverse actions in the brain. .NO measurement in vivo has been a challenging task due to its low concentration, short half-life, and high reactivity with other biological molecules, such as superoxide radical, thiols, and heme proteins. Electrochemical methods are versatile approaches for detecting and monitoring various neurotransmitters. When associated with microelectrodes inserted into the brain they provide high temporal and spatial resolution, allowing measurements of neurochemicals in physiological environments in a real-time fashion. To date, electrochemical detection of .NO is the only available technique that provides a high sensitivity, low detection limit, selectivity, and fast response to measure the concentration dynamics of .NO in vivo. We have used carbon fiber microelectrodes coated with two layers of Nafion and o-phenylenediamine to monitor the rate and pattern of .NO change in the rat brain in vivo. The analytical performance of microelectrodes was assessed in terms of sensitivity, detection limit, and selectivity ratios against major interferents: ascorbate, dopamine, noradrenaline, serotonin, and nitrite. For the in vivo recording experiments, we used a microelectrode/micropipette array inserted into the brain using a stereotaxic frame. The characterization of in vivo signals was assessed by electrochemical and pharmacological verification. Results support our experimental conditions that the measured oxidation current reflects variations in the .NO concentration in brain extracellular space. We report results from recordings in hippocampus and striatum upon stimulation of N-methyl-d-aspartate-subtype glutamate receptors. Moreover, the kinetics of .NO disappearance in vivo following pressure ejection of a .NO solution is also addressed.


Asunto(s)
Anestesia , Encéfalo/metabolismo , Óxido Nítrico/análisis , Animales , Electroquímica , Humanos , Óxido Nítrico/metabolismo , Ratas
12.
Biosens Bioelectron ; 23(9): 1382-9, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18243683

RESUMEN

A ceramic-based microelectrode array (MEA) with enzyme coatings for the accurate measurement of acetylcholine (ACh) in brain tissues is presented. Novel design features allow for self-referencing recordings for improved limits of detection and highly selective measurements of ACh and choline (Ch), simultaneously. Design and fabrication features also result in minimal tissue damage during implantation and improved enzyme coatings due to isolated recording sites. In these studies we have used a recombinant human acetylcholinesterase enzyme coating, which has better reproducibility than other commercially available enzymes. The precisely patterned recording site dimensions, low limit of detection (0.2 micro M) and fast response time ( approximately 1s) allow for second-by-second measurements of ACh and Ch in brain tissues. An electropolymerized meta-phenylenediamine (mPD) layer was used to exclude interfering substances from being recorded at the platinum recording sites. Our studies support that the mPD layer was stable for over 24h under in vitro and in vivo recording conditions. In addition, our work supports that the current configuration of the MEAs produces a robust design, which is suited for measures of ACh and Ch in rat brain.


Asunto(s)
Acetilcolina/análisis , Química Encefálica , Cerámica/química , Colina/análisis , Microelectrodos , Animales , Masculino , Ratas , Ratas Endogámicas F344
13.
J Neurosci Methods ; 252: 75-9, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25614383

RESUMEN

BACKGROUND: The aberrant regulation of glutamate has been implicated in numerous psychiatric disorders including drug addiction and attention-deficit/hyperactivity disorder. To understand glutamate signaling and its role in facilitating disease, tools to directly measure glutamate in a complex, neural network are needed. NEW METHOD: The development of a ceramic-based, dual-sided, biomorphic microelectrode array with four recording sites on each side to facilitate a more detailed measurement of glutamate in awake, behaving rodents. RESULTS: In vitro calibrations of these biosensors showed selective and specific responses to glutamate. In awake rats, these biomorphic electrode arrays enabled the concurrent evaluation of glutamate in a network, the frontal cortex: including the cingulate, prelimbic, infralimbic and dorsal peduncle regions. Regions within the frontal cortex exhibited varying phasic glutamate patterns in awake animals.Comparison with existing method: Existing methodologies to measure glutamate neurotransmission employ single-sided biosensors or biosensors capable of measuring neurochemicals at only one location in space. CONCLUSIONS: Multi-site, biomorphic neurochemical biosensors provide a method for simultaneously measuring glutamate in multiple areas of a neural network in the brain.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Lóbulo Frontal/patología , Ácido Glutámico/metabolismo , Microelectrodos , Red Nerviosa/metabolismo , Animales , Técnicas Biosensibles , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Endogámicas SHR
14.
J Neurosci Methods ; 251: 120-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25999268

RESUMEN

BACKGROUND: To circumvent the challenges associated with delivering large compounds directly to the brain for the treatment of Parkinson's disease (PD), non-invasive procedures utilizing smaller molecules with protective and/or restorative actions on dopaminergic neurons are needed. NEW METHOD: We developed a methodology for evaluating the effects of a synthetic neuroactive peptide, DNSP-11, on the nigrostriatal system using repeated intranasal delivery in both normal and a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of PD. RESULTS: Normal rats repeatedly administered varying doses of DNSP-11 intranasally for 3 weeks exhibited a significant increase in dopamine (DA) turnover in both the striatum and substantia nigra (SN) at 300µg, suggestive of a stimulative effect of the dopaminergic system. Additionally, a protective effect was observed following repeated intranasal administration in 6-OHDA lesioned rats, as suggested by: a significant decrease in d-amphetamine-induced rotation at 2 weeks; a decrease in DA turnover in the lesioned striatum; and an increased sparing of tyrosine hydroxylase (TH) positive (+) neurons in a specific sub-region of the lesioned substantia nigra pars compacta (SNpc). Finally, tracer studies showed (125)I-DNSP-11 distributed diffusely throughout the brain, including the striatum and SN, as quickly as 30min after a single intranasal dose. COMPARISON WITH EXISTING METHODS: The results of bilateral intranasal administration of DNSP-11 are compared to our unilateral single infusion studies to the brain in rats. CONCLUSIONS: These studies support that DNSP-11 can be delivered intranasally and maintain its neuroactive properties in both normal rats and in a unilateral 6-OHDA rat model of PD.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Oligopéptidos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Administración Intranasal , Análisis de Varianza , Animales , Antiparkinsonianos/farmacocinética , Autorradiografía , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dextroanfetamina/farmacología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Lateralidad Funcional/efectos de los fármacos , Masculino , Oligopéptidos/farmacocinética , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Ratas , Ratas Endogámicas F344 , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
15.
J Neurosci Methods ; 119(2): 163-71, 2002 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-12323420

RESUMEN

This paper describes improvements and further characterization of a ceramic-based multisite microelectrode for in vivo measurements of L-glutamate. Improvements include increased recording area, insulation deposition using photolithography for more uniform recording sites and forming the microelectrodes using a diamond saw providing smoother microelectrode edges. The new microelectrodes are triangular in shape, 1 cm in length and taper from 1 mm to a 2-5 microm tip. Details on performing in vivo measurements are given, including microelectrode preparation, pitfalls of the recording method and approaches to enhance reproducibility of the technique. The detection limit for L-glutamate was lowered to approximately 0.5 microM and a self-referencing recording technique was utilized to remove interferents as well as decrease noise. Applications of the microelectrodes to study L-glutamate uptake and release in rat prefrontal cortex, cortex, cerebellum and striatum are included.


Asunto(s)
Sistema Nervioso Central/metabolismo , Cerámica , Ácido Glutámico/análisis , Microdiálisis/instrumentación , Animales , Cerámica/química , Ácido Glutámico/metabolismo , Masculino , Microdiálisis/métodos , Microelectrodos/normas , Ratas , Ratas Endogámicas F344
16.
Psychopharmacology (Berl) ; 231(15): 3019-29, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24682500

RESUMEN

RATIONALE: Attention-deficit/hyperactivity disorder (ADHD) is thought to involve hypofunctional catecholamine systems in the striatum, nucleus accumbens, and prefrontal cortex (PFC); however, recent clinical evidence has implicated glutamate dysfunction in the pathophysiology of ADHD. Recent studies show that increased stimulation of dopamine D2 and D4 receptors causes inhibition of N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, respectively. The spontaneously hypertensive rat (SHR) model of ADHD combined type (C) has been found to have a hypofunctional dopamine system in the ventral striatum, nucleus accumbens, and PFC compared to the control Wistar Kyoto (WKY) strain. OBJECTIVES: Based on the current understanding of typical dopamine-glutamate interactions, we hypothesized that the SHR model of ADHD would have a hyperfunctional glutamate system terminating in the striatum, nucleus accumbens, and PFC. RESULTS: High-speed amperometric recordings combined with four-channel microelectrode arrays to directly measure glutamate dynamics showed increased evoked glutamate release in the PFC (cingulate and infralimbic cortices, p < 0.05) and also in the striatum (p < 0.05) of the SHR (ADHD-C) as compared to the WKY. Finally, glutamate uptake was discovered to be aberrant in the PFC, but not the striatum, of the SHR when compared to the control WKY strain. CONCLUSIONS: These results suggest that the glutamatergic system in the PFC of the SHR model of ADHD is hyperfunctional and that targeting glutamate in the PFC could lead to the development of novel therapeutics for the treatment of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Cuerpo Estriado/fisiopatología , Ácido Glutámico/metabolismo , Corteza Prefrontal/fisiopatología , Animales , Fármacos del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Microelectrodos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Cloruro de Potasio/farmacología , Corteza Prefrontal/efectos de los fármacos , Ratas Endogámicas SHR , Ratas Endogámicas WKY
17.
ACS Chem Neurosci ; 4(5): 721-8, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23650904

RESUMEN

Glutaraldehyde is widely used as a cross-linking agent for enzyme immobilization onto microelectrodes. Recent studies and prior reports indicate changes in enzyme activity and selectivity with certain glutaraldehyde cross-linking procedures that may jeopardize the performance of microelectrode recordings and lead to falsely elevated responses in biological systems. In this study, the sensitivity of glutaraldehyde cross-linked glutamate oxidase-based microelectrode arrays to 22 amino acids was tested and compared to glutamate. As expected, responses to electroactive amino acids (Cys, Tyr, Trp) were detected at both nonenzyme-coated and enzyme-coated microelectrodes sites, while the remaining amino acids yielded no detectable responses. Electroactive amino acids were effectively blocked with a m-phenylene diamine (mPD) layer and, subsequently, no responses were detected. Preliminary results on the use of poly(ethylene glycol) diglycidyl ether (PEGDE) as a potentially more reliable cross-linking agent for the immobilization of glutamate oxidase onto ceramic-based microelectrode arrays are reported and show no significant advantages over glutaraldehyde as we observe comparable selectivities and responses. These results support that glutaraldehyde-cross-linked glutamate oxidase retains sufficient enzyme specificity for accurate in vivo brain measures of tonic and phasic glutamate levels when immobilized using specific "wet" coating procedures.


Asunto(s)
Aminoácido Oxidorreductasas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Enzimas Inmovilizadas/efectos de los fármacos , Ácido Glutámico/análisis , Glutaral/farmacología , Aminoácido Oxidorreductasas/fisiología , Técnicas Biosensibles , Enzimas Inmovilizadas/fisiología , Microelectrodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-24111095

RESUMEN

Conformal ceramic electrodes utilized in prior recordings of nonhuman primate prefrontal cortical layer 2/3 and layer 5 neurons were used in this study to record tonic glutamate concentration and transient release in layer 2/3 PFC. Tonic glutamate concentration increased in the Match (decision) phase of a visual delayed-match-to-sample (DMS) task, while increased transient glutamate release occurred in the Sample (encoding) phase of the task. Further, spatial vs. object-oriented DMS trials evoked differential changes in glutamate concentration. Thus the same conformal recording electrodes were capable of electrophysiological and electrochemical recording, and revealed similar evidence of neural processing in layers 2/3 and layer 5 during cognitive processing in a behavioral task.


Asunto(s)
Cerámica/química , Ácido Glutámico/metabolismo , Macaca mulatta , Neuronas/metabolismo , Corteza Prefrontal/fisiología , Animales , Conducta Animal , Electrodos , Fenómenos Electrofisiológicos , Masculino
19.
Artículo en Inglés | MEDLINE | ID: mdl-23189041

RESUMEN

Prefrontal cortical (PFC) activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex (PFC) are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in PFC are involved in the executive control of behavior in rhesus macaque nonhuman primates (NHPs) performing a delayed-match-to-sample (DMS) task. PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5) pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of "executive function," hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain.

20.
Neuropharmacology ; 63(8): 1327-34, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22960443

RESUMEN

The most widely used animal model of attention-deficit/hyperactivity disorder (ADHD) is the spontaneously hypertensive rat (SHR/NCrl), which best represents the combined subtype (ADHD-C). Recent evidence has revealed that a progenitor strain, the Wistar Kyoto from Charles River Laboratories (WKY/NCrl), is useful as a model of the inattentive subtype (ADHD-PI) and the Wistar Kyoto from Harlan Laboratories (WKY/NHsd) and the Sprague Dawley (SD) have been suggested as controls. Dopamine (DA) dysfunction in the striatum (Str) and nucleus accumbens core (NAc) is thought to play a significant role in the pathophysiology of ADHD but data obtained with the SHR is equivocal. Using high-speed chronoamperometric recordings with carbon fiber microelectrodes, we found that the SHR/NCrl displayed decreased KCl-evoked DA release versus the WKY/NCrl model of ADHD-PI in the dorsal Str. The WKY/NCrl and the WKY/NHsd control did not differ from each other; however, the control SD released less DA than the WKY/NCrl model of ADHD-PI in the dorsal Str and less than the control WKY/NHsd in the intermediate Str. The SHR/NCrl had faster DA uptake in the ventral Str and NAc versus both control strains, while the WKY/NCrl model of ADHD-PI exhibited faster DA uptake in the NAc versus the SD control. These results suggest that increased surface expression of DA transporters may explain the more rapid uptake of DA in the Str and NAc of these rodent models of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/psicología , Dopamina/metabolismo , Neostriado/metabolismo , Núcleo Accumbens/metabolismo , Animales , Interpretación Estadística de Datos , Dopamina/fisiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Masculino , Microelectrodos , Microinyecciones , Neostriado/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Cloruro de Potasio/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA