Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951036

RESUMEN

The implementation of low-dimensional movement control by the central nervous system has been debated for decades. In this study, we investigated the dimensionality of the control signals received by spinal motor neurons when controlling either the ankle or knee joint torque. We first identified the low-dimensional latent factors underlying motor unit activity during torque-matched isometric contractions in male participants. Subsequently, we evaluated the extent to which motor units could be independently controlled. To this aim, we used an online control paradigm in which participants received the corresponding motor unit firing rates as visual feedback. We identified two main latent factors, regardless of the muscle group (vastus lateralis-medialis and gastrocnemius lateralis-medialis). The motor units of the gastrocnemius lateralis could be controlled largely independently from those of the gastrocnemius medialis during ankle plantarflexion. This dissociation of motor unit activity imposed similar behavior to the motor units that were not displayed in the feedback. Conversely, it was not possible to dissociate the activity of the motor units between the vastus lateralis and medialis muscles during the knee extension tasks. These results demonstrate that the number of latent factors estimated from linear dimensionality reduction algorithms does not necessarily reflect the dimensionality of volitional control of motor units. Overall, individual motor units were never controlled independently of all others but rather belonged to synergistic groups. Together, these findings provide evidence for a low-dimensional control of motor units constrained by common inputs, with notable differences between muscle groups.Significance statement In this study, we initially examined the latent factors underlying motor unit activity in the vastii or gastrocnemii muscles during torque-matched isometric contractions. We then explored the extent to which these motor units could be controlled independently, using an online control paradigm where participants received visual information on motor unit firing rates. Although participants were able to dissociate the activity of a few motor unit pairs (from the gastrocnemius medialis and lateralis muscles), our results provide direct evidence of a low-dimensional control, constrained by common inputs, limiting flexibility in motor unit recruitment. Furthermore, we show that the number of latent factors identified by dimensionality reduction algorithms does not necessarily reflect the dimensionality of volitional control of motor units.

2.
J Neurosci ; 43(16): 2860-2873, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36922028

RESUMEN

The purpose of our study was to identify the low-dimensional latent components, defined hereafter as motor unit modes, underlying the discharge rates of the motor units in two knee extensors (vastus medialis and lateralis, eight men) and two hand muscles (first dorsal interossei and thenars, seven men and one woman) during submaximal isometric contractions. Factor analysis identified two independent motor unit modes that captured most of the covariance of the motor unit discharge rates. We found divergent distributions of the motor unit modes for the hand and vastii muscles. On average, 75% of the motor units for the thenar muscles and first dorsal interosseus were strongly correlated with the module for the muscle in which they resided. In contrast, we found a continuous distribution of motor unit modes spanning the two vastii muscle modules. The proportion of the muscle-specific motor unit modes was 60% for vastus medialis and 45% for vastus lateralis. The other motor units were either correlated with both muscle modules (shared inputs) or belonged to the module for the other muscle (15% for vastus lateralis). Moreover, coherence of the discharge rates between motor unit pools was explained by the presence of shared synaptic inputs. In simulations with 480 integrate-and-fire neurons, we demonstrate that factor analysis identifies the motor unit modes with high levels of accuracy. Our results indicate that correlated discharge rates of motor units that comprise motor unit modes arise from at least two independent sources of common input among the motor neurons innervating synergistic muscles.SIGNIFICANCE STATEMENT It has been suggested that the nervous system controls synergistic muscles by projecting common synaptic inputs to the engaged motor neurons. In our study, we reduced the dimensionality of the output produced by pools of synergistic motor neurons innervating the hand and thigh muscles during isometric contractions. We found two neural modules, each representing a different common input, that were each specific for one of the muscles. In the vastii muscles, we found a continuous distribution of motor unit modes spanning the two synergistic muscles. Some of the motor units from the homonymous vastii muscle were controlled by the dominant neural module of the other synergistic muscle. In contrast, we found two distinct neural modules for the hand muscles.


Asunto(s)
Contracción Isométrica , Músculo Esquelético , Masculino , Femenino , Humanos , Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps , Neuronas Motoras/fisiología , Mano , Electromiografía , Contracción Muscular
3.
J Neurophysiol ; 131(2): 166-175, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116611

RESUMEN

Persistent inward currents (PICs) increase the intrinsic excitability of α-motoneurons. The main objective of this study was to compare estimates of α-motoneuronal PICs between inactive, chronic resistance-trained, and chronic endurance-trained young individuals. We also aimed to investigate whether there is a relationship in the estimates of α-motoneuronal PIC magnitude between muscles. Estimates of PIC magnitude were obtained in three groups of young individuals: resistance-trained (n = 12), endurance-trained (n = 12), and inactive (n = 13). We recorded high-density surface electromyography (HDsEMG) signals from tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus medialis (VM), and vastus lateralis (VL). Then, signals were decomposed with convolutive blind source separation to identify motor unit (MU) spike trains. Participants performed triangular isometric contractions to a peak of 20% of their maximum voluntary contraction. A paired-motor-unit analysis was used to calculate ΔF, which is assumed to be proportional to PIC magnitude. Despite the substantial differences in physical training experience between groups, we found no differences in ΔF, regardless of the muscle. Significant correlations of estimates of PIC magnitude were found between muscles of the same group (VL-VM, SOL-GM). Only two correlations (out of 8) between muscles of different groups were found (TA-GM and VL-GM). Overall, our findings suggest that estimates of PIC magnitude from lower-threshold MUs at low contraction intensities in the lower limb muscles are not influenced by physical training experience in healthy young individuals. They also suggest muscle-specific and muscle group-specific regulations of the estimates of PIC magnitude.NEW & NOTEWORTHY Chronic resistance and endurance training can lead to specific adaptations in motor unit activity. The contribution of α-motoneuronal persistent inward currents (PICs) to these adaptations is currently unknown in healthy young individuals. Therefore, we studied whether estimates of α-motoneuronal PIC magnitude are higher in chronically trained endurance- and resistance-trained individuals. We also studied whether there is a relationship between the estimates of α-motoneuronal PIC magnitude of different lower limb muscles.


Asunto(s)
Entrenamiento Aeróbico , Masculino , Humanos , Músculo Esquelético/fisiología , Electromiografía , Músculo Cuádriceps , Contracción Isométrica/fisiología , Extremidad Inferior
4.
Eur J Appl Physiol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940932

RESUMEN

PURPOSE: To assess the effect of a remote handgrip contraction during wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (NMES) on the magnitude of extra torque, progressive increase in torque during stimulation, and estimates of the persistent inward current (PIC) contribution to motoneuron firing in the plantar flexors. METHODS: Ten participants performed triangular shaped contractions to 20% of maximal plantar flexion torque before and after WPHF NMES with and without a handgrip contraction, and control conditions. Extra torque, the relative difference between the initial and final torque during stimulation, and sustained electromyographic (EMG) activity were assessed. High-density EMG was recorded during triangular shaped contractions to calculate ∆F, an estimate of PIC contribution to motoneuron firing, and its variation before vs after the intervention referred to as ∆F change score. RESULTS: While extra torque was not significantly increased with remote contraction (WPHF + remote) vs WPHF (+ 37 ± 63%, p = 0.112), sustained EMG activity was higher in this condition than WPHF (+ 3.9 ± 4.3% MVC EMG, p = 0.017). Moreover, ∆F was greater (+ 0.35 ± 0.30 Hz) with WPHF + remote than control (+ 0.03 ± 0.1 Hz, p = 0.028). A positive correlation was found between ∆F change score and extra torque in the WPHF + remote (r = 0.862, p = 0.006). DISCUSSION: The findings suggest that the addition of remote muscle contraction to WPHF NMES enhances the central contribution to torque production, which may be related to an increased PIC contribution to motoneuron firing. Gaining a better understanding of these mechanisms should enable NMES intervention optimization in clinical and rehabilitation settings, improving neuromuscular function in clinical populations.

5.
J Physiol ; 601(1): 11-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36353890

RESUMEN

Understanding how movement is controlled by the CNS remains a major challenge, with ongoing debate about basic features underlying this control. In current established views, the concepts of motor neuron recruitment order, common synaptic input to motor neurons and muscle synergies are usually addressed separately and therefore seen as independent features of motor control. In this review, we analyse the body of literature in a broader perspective and we identify a unified approach to explain apparently divergent observations at different scales of motor control. Specifically, we propose a new conceptual framework of the neural control of movement, which merges the concept of common input to motor neurons and modular control, together with the constraints imposed by recruitment order. This framework is based on the following assumptions: (1) motor neurons are grouped into functional groups (clusters) based on the common inputs they receive; (2) clusters may significantly differ from the classical definition of motor neuron pools, such that they may span across muscles and/or involve only a portion of a muscle; (3) clusters represent functional modules used by the CNS to reduce the dimensionality of the control; and (4) selective volitional control of single motor neurons within a cluster receiving common inputs cannot be achieved. Here, we discuss this framework and its underlying theoretical and experimental evidence.


Asunto(s)
Neuronas Motoras , Músculo Esquelético , Músculo Esquelético/fisiología , Electromiografía , Neuronas Motoras/fisiología , Movimiento/fisiología , Sinapsis/fisiología
6.
J Physiol ; 601(15): 3201-3219, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772071

RESUMEN

Movements are reportedly controlled through the combination of synergies that generate specific motor outputs by imposing an activation pattern on a group of muscles. To date, the smallest unit of analysis of these synergies has been the muscle through the measurement of its activation. However, the muscle is not the lowest neural level of movement control. In this human study (n = 10), we used a purely data-driven method grounded on graph theory to extract networks of motor neurons based on their correlated activity during an isometric multi-joint task. Specifically, high-density surface electromyography recordings from six lower limb muscles were decomposed into motor neurons spiking activity. We analysed these activities by identifying their common low-frequency components, from which networks of correlated activity to the motor neurons were derived and interpreted as networks of common synaptic inputs. The vast majority of the identified motor neurons shared common inputs with other motor neuron(s). In addition, groups of motor neurons were partly decoupled from their innervated muscle, such that motor neurons innervating the same muscle did not necessarily receive common inputs. Conversely, some motor neurons from different muscles-including distant muscles-received common inputs. The study supports the theory that movements are produced through the control of small numbers of groups of motor neurons via common inputs and that there is a partial mismatch between these groups of motor neurons and muscle anatomy. We provide a new neural framework for a deeper understanding of the structure of common inputs to motor neurons. KEY POINTS: A central and unresolved question is how spinal motor neurons are controlled to generate movement. We decoded the spiking activities of dozens of spinal motor neurons innervating six muscles during a multi-joint task, and we used a purely data-driven method grounded on graph theory to extract networks of motor neurons based on their correlated activity (considered as common input). The vast majority of the identified motor neurons shared common inputs with other motor neuron(s). Groups of motor neurons were partly decoupled from their innervated muscle, such that motor neurons innervating the same muscle did not necessarily receive common inputs. Conversely, some motor neurons from different muscles, including distant muscles, received common inputs. The study supports the theory that movement is produced through the control of groups of motor neurons via common inputs and that there is a partial mismatch between these groups of motor neurons and muscle anatomy.


Asunto(s)
Neuronas Motoras , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Electromiografía , Neuronas Motoras/fisiología , Extremidad Inferior , Movimiento
7.
J Physiol ; 601(19): 4337-4354, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37615253

RESUMEN

Recent studies have suggested that the nervous system generates movements by controlling groups of motor neurons (synergies) that do not always align with muscle anatomy. In this study, we determined whether these synergies are robust across tasks with different mechanical constraints. We identified motor neuron synergies using principal component analysis (PCA) and cross-correlations between smoothed discharge rates of motor neurons. In part 1, we used simulations to validate these methods. The results suggested that PCA can accurately identify the number of common inputs and their distribution across active motor neurons. Moreover, the results confirmed that cross-correlation can separate pairs of motor neurons that receive common inputs from those that do not receive common inputs. In part 2, 16 individuals performed plantarflexion at three ankle angles while we recorded EMG signals from the gastrocnemius lateralis (GL) and medialis (GM) and the soleus (SOL) with grids of surface electrodes. The PCA revealed two motor neuron synergies. These motor neuron synergies were relatively stable, with no significant differences in the distribution of motor neuron weights across ankle angles (P = 0.62). When the cross-correlation was calculated for pairs of motor units tracked across ankle angles, we observed that only 13.0% of pairs of motor units from GL and GM exhibited significant correlations of their smoothed discharge rates across angles, confirming the low level of common inputs between these muscles. Overall, these results highlight the modularity of movement control at the motor neuron level, suggesting a sensible reduction of computational resources for movement control. KEY POINTS: The CNS might generate movements by activating groups of motor neurons (synergies) with common inputs. We show here that two main sources of common inputs drive the motor neurons innervating the triceps surae muscles during isometric ankle plantarflexions. We report that the distribution of these common inputs is globally invariant despite changing the mechanical constraints of the tasks, i.e. the ankle angle. These results suggest the functional relevance of the modular organization of the CNS to control movements.


Asunto(s)
Articulación del Tobillo , Músculo Esquelético , Humanos , Articulación del Tobillo/fisiología , Electromiografía , Músculo Esquelético/fisiología , Pierna/fisiología , Neuronas Motoras/fisiología
8.
Eur J Appl Physiol ; 123(9): 1879-1893, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37079082

RESUMEN

PURPOSE: Redundancy of the musculoskeletal system implies multiple strategies are theoretically available to coordinate back extensor muscles. This study investigated whether coordination between back muscles during a tightly constrained isometric trunk extension task varies within and between individuals, and whether this changes following brief exposure to activation feedback of a muscle. METHODS: Nine healthy participants performed three blocks of two repetitions of ramped isometric trunk extension in side-lying against resistance from 0-30% of maximum voluntary contraction over 30 s (force feedback). Between blocks, participants repeated contractions with visual feedback of electromyography (EMG) from either superficial (SM) or deep multifidus (DM), in two conditions; 'After SM' and 'After DM'. Intramuscular EMG was recorded from SM, DM, and longissimus (LG) simultaneously with shear wave elastography (SWE) from SM or DM. RESULTS: In the 'Natural' condition (force feedback only), group data showed incremental increases in EMG with force, with minor changes in distribution of activation between muscles as force increased. SM was the most active muscle during the 'Natural' condition, but with DM most active in some participants. Individual data showed that coordination between muscles differed substantially between repetitions and individuals. Brief exposure to EMG feedback altered coordination. SWE showed individual variation, but findings differed from EMG. CONCLUSION: This study revealed substantial variation in coordination between back extensor muscles within and between participants, and after exposure to feedback, in a tightly constrained task. Shear modulus revealed similar variation, but with an inconsistent relationship to EMG. These data highlight highly flexible control of back muscles.


Asunto(s)
Músculos de la Espalda , Dolor de la Región Lumbar , Humanos , Músculos Paraespinales/diagnóstico por imagen , Músculo Esquelético/fisiología , Electromiografía , Músculos , Contracción Isométrica/fisiología
9.
J Neurophysiol ; 127(2): 421-433, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020505

RESUMEN

This study aimed to determine whether neural drive is redistributed between muscles during a fatiguing isometric contraction, and if so, whether the initial level of common synaptic input between these muscles constrains this redistribution. We studied two muscle groups: triceps surae (14 participants) and quadriceps (15 participants). Participants performed a series of submaximal isometric contractions and a torque-matched contraction maintained until task failure. We used high-density surface electromyography to identify the behavior of 1,874 motor units from the soleus, gastrocnemius medialis (GM), gastrocnemius lateralis (GL), rectus femoris, vastus lateralis (VL), and vastus medialis (VM). We assessed the level of common drive between muscles in the absence of fatigue using a coherence analysis. We also assessed the redistribution of neural drive between muscles during the fatiguing contraction through the correlation between their cumulative spike trains (index of neural drive). The level of common drive between VL and VM was significantly higher than that observed for the other muscle pairs, including GL-GM. The level of common drive increased during the fatiguing contraction, but the differences between muscle pairs persisted. We also observed a strong positive correlation of neural drive between VL and VM during the fatiguing contraction (r = 0.82). This was not observed for the other muscle pairs, including GL-GM, which exhibited differential changes in neural drive. These results suggest that less common synaptic input between muscles allows for more flexible coordination strategies during a fatiguing task, i.e., differential changes in neural drive across muscles. The role of this flexibility on performance remains to be elucidated.NEW & NOTEWORTHY Redundancy of the neuromuscular system theoretically allows for a redistribution of the neural drive across muscles (i.e., between-muscle compensation) during a fatiguing contraction. Our results suggest that a high level of common input between muscles (e.g., vastus lateralis and medialis) represents a neural constraint making it less likely to redistribute the neural drive across these muscles. In this way, redistribution was only observed across muscles that share little common synaptic input (e.g., gastrocnemius lateralis and medialis).


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Contracción Isométrica/fisiología , Neuronas Motoras/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Electromiografía , Humanos , Adulto Joven
10.
J Neurophysiol ; 128(4): 778-789, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36001792

RESUMEN

Whether the neural control of manual behaviors differs between the dominant and nondominant hand is poorly understood. This study aimed to determine whether the level of common synaptic input to motor neurons innervating the same or different muscles differs between the dominant and the nondominant hand. Seventeen participants performed two motor tasks with distinct mechanical requirements: an isometric pinch and an isometric rotation of a pinched dial. Each task was performed at 30% of maximum effort and was repeated with the dominant and nondominant hand. Motor units were identified from two intrinsic (flexor digitorum interosseous and thenar) and one extrinsic muscle (flexor digitorum superficialis) from high-density surface electromyography recordings. Two complementary approaches were used to estimate common synaptic inputs. First, we calculated the coherence between groups of motor neurons from the same and from different muscles. Then, we estimated the common input for all pairs of motor neurons by correlating the low-frequency oscillations of their discharge rate. Both analyses led to the same conclusion, indicating less common synaptic input between motor neurons innervating different muscles in the dominant hand than in the nondominant hand, which was only observed during the isometric rotation task. No between-side differences in common input were observed between motor neurons of the same muscle. This lower level of common input could confer higher flexibility in the recruitment of motor units, and therefore, in mechanical outputs. Whether this difference between the dominant and nondominant arm is the cause or the consequence of handedness remains to be determined.NEW & NOTEWORTHY How the neural control of manual behaviors differs between the dominant and nondominant hand remains poorly understood. This study shows that there is less common synaptic input between motor neurons innervating different muscles in the dominant than in the nondominant hand during isometric rotation tasks. This lower level of common input could confer higher flexibility in the recruitment of motor units.


Asunto(s)
Lateralidad Funcional , Neuronas Motoras , Electromiografía , Mano/inervación , Humanos , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología
11.
J Anat ; 240(1): 131-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411299

RESUMEN

Assessment of regional muscle architecture is primarily done through the study of animals, human cadavers, or using b-mode ultrasound imaging. However, there remain several limitations to how well such measurements represent in vivo human whole muscle architecture. In this study, we developed an approach using diffusion tensor imaging and magnetic resonance imaging to quantify muscle fibre lengths in different muscle regions along a muscle's length and width. We first tested the between-day reliability of regional measurements of fibre lengths in the medial (MG) and lateral gastrocnemius (LG) and found good reliability for these measurements (intraclass correlation coefficient [ICC] = 0.79 and ICC = 0.84, respectively). We then applied this approach to a group of 32 participants including males (n = 18), females (n = 14), young (24 ± 4 years) and older (70 ± 2 years) adults. We assessed the differences in regional muscle fibre lengths between different muscle regions and between individuals. Additionally, we compared regional muscle fibre lengths between sexes, age groups, and muscles. We found substantial variability in fibre lengths between different regions within the same muscle and between the MG and the LG across individuals. At the group level, we found no difference in mean muscle fibre length between males and females, nor between young and older adults, or between the MG and the LG. The high variability in muscle fibre lengths between different regions within the same muscle, possibly expands the functional versatility of the muscle for different task requirements. The high variability between individuals supports the use of subject-specific measurements of muscle fibre lengths when evaluating muscle function.


Asunto(s)
Imagen de Difusión Tensora , Músculo Esquelético , Animales , Imagen de Difusión Tensora/métodos , Femenino , Imagen por Resonancia Magnética , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Reproducibilidad de los Resultados
12.
Scand J Med Sci Sports ; 32(9): 1335-1345, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35611628

RESUMEN

Large inter-individual variability of activation strategies is observed during hamstring strengthening exercises but their consequences remain unexplored. The objective of this study was to determine whether individual activation strategies are related to the distribution of damage across the hamstring muscle heads semimembranosus (SM), semitendinosus (ST), and biceps femoris (BF) after eccentric contractions. 24 participants performed 5 sets of 15 maximal eccentric contractions of knee flexors on a dynamometer, while activation of each muscle head was assessed using surface electromyography. Knee flexion maximal isometric strength was assessed before exercise and 48 h afterward. Shear modulus was measured using shear wave elastography before exercise and 30 min afterward to quantify the distribution of damage across the hamstring muscle heads. At 48 h, maximal knee flexion torque had decreased by 15.9% ± 16.9% (p < 0.001). Although no differences between activation ratios of each muscle were found during the eccentric exercise (all p > 0.364), we reported a heterogeneous distribution of damage, with a larger change in shear modulus of ST/Hams than SM/Hams (+70.8%, p < 0.001) or BF/Hams (+50.3%, p < 0.001). A large correlation was found between the distribution of activation and the distribution of damage for ST/Hams (r = 0.69; p < 001). This study provides evidence that the distribution of activation during maximal eccentric contractions has mechanical consequences for synergist muscles. Further studies are needed to understand whether individual activation strategies influence the distribution of structural adaptations after a training program.


Asunto(s)
Músculos Isquiosurales , Electromiografía , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/fisiología , Humanos , Rodilla , Articulación de la Rodilla/fisiología , Músculo Esquelético/fisiología , Torque
13.
J Exp Biol ; 224(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34096594

RESUMEN

The functional difference between the medial gastrocnemius (MG) and lateral gastrocnemius (LG) during walking in humans has not yet been fully established. Although evidence highlights that the MG is activated more than the LG, the link with potential differences in mechanical behavior between these muscles remains unknown. In this study, we aimed to determine whether differences in activation between the MG and LG translate into different fascicle behavior during walking. Fifteen participants walked at their preferred speed under two conditions: 0% and 10% incline treadmill grade. We used surface electromyography and B-mode ultrasound to estimate muscle activation and fascicle dynamics in the MG and LG. We observed a higher normalized activation in the MG than in the LG during stance, which did not translate into greater MG normalized fascicle shortening. However, we observed significantly less normalized fascicle lengthening in the MG than in the LG during early stance, which matched with the timing of differences in activation between muscles. This resulted in more isometric behavior of the MG, which likely influences the muscle-tendon interaction and enhances the catapult-like mechanism in the MG compared with the LG. Nevertheless, this interplay between muscle activation and fascicle behavior, evident at the group level, was not observed at the individual level, as revealed by the lack of correlation between the MG-LG differences in activation and MG-LG differences in fascicle behavior. The MG and LG are often considered as equivalent muscles but the neuromechanical differences between them suggest that they may have distinct functional roles during locomotion.


Asunto(s)
Músculo Esquelético , Caminata , Fenómenos Biomecánicos , Electromiografía , Humanos , Contracción Muscular , Tendones
14.
BMC Musculoskelet Disord ; 22(1): 829, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579696

RESUMEN

BACKGROUND: In aging, muscle stiffness is considered as one of the factors associated with the reduction of force generation capability. There have been inconsistent findings on age-related alteration in the passive stiffness of quadriceps muscle in the female adults. Thus, the aim of this study was to determine the effect of aging on the shear moduli of the superficial muscle heads of the quadriceps and to explore its relationship with knee extension force. METHODS: Passive shear moduli of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) were measured at rest using shear wave elastography in 20 young and 20 senior female adults. Measurements were repeated at four knee joint positions, that is, 30°, 60°, 90°, and 105° of knee flexion. Maximal isometric voluntary knee extension force was assessed at 30°, 60°, and 90° of knee flexion. RESULTS: As per our findings, senior adults were determined to have significantly higher passive muscle shear moduli in the RF (by 34% - 68%; all p < 0.05) and the VL muscle heads (by 13%-16%, all p < 0.05) at and beyond 60° of knee flexion. Age-related increase in the VM was evident at 105° knee flexion (by11%, p = 0.020). The RF shear modulus was negatively correlated to the maximal isometric voluntary contraction force measured at 60° (r = - 0.485, p = 0.030) in senior adults. CONCLUSIONS: Senior female adults had greater passive stiffness at the superficial muscle heads of the quadriceps muscles when measured at long muscle length. Among the senior female adults, the passive stiffness of RF has been determined to have a negative association with the knee extensor force only at 60° knee flexion. No significant association was noted for other angles and muscles.


Asunto(s)
Contracción Isométrica , Músculo Cuádriceps , Adulto , Electromiografía , Femenino , Humanos , Rodilla , Articulación de la Rodilla/diagnóstico por imagen , Músculo Esquelético/diagnóstico por imagen , Músculo Cuádriceps/diagnóstico por imagen , Torque
15.
J Sports Sci ; 39(16): 1830-1837, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33678131

RESUMEN

The aim of this study was to compare the distribution of activation among the three heads of the hamstring between a knee flexion-oriented exercise (Nordic hamstring) and a hip extension-oriented exercise (stiff-leg Deadlift) at the group and individual level. Data were collected for 20 participants. Muscle activation of the semimembranosus (SM), semitendinosus (ST), and biceps femoris (BF) was estimated using surface electromyography (EMG) during Nordic hamstring and stiff-leg Deadlift exercises. Although Nordic hamstring exercise induced a higher normalized RMS EMG value for BF (64.5 ± 17.4%) compared to SM (48.6 ± 14.6%; P<0.001) and ST (55.9 ± 17.4%; P < 0.001), the greatest active muscle varied between individuals. Similar interindividual differences in the greatest active muscle were found for the stiff-leg Deadlift exercise. Regarding the distribution of activation, the stiff-leg Deadlift favoured the contribution of the SM compared to ST (P < 0.001, 18/20 participants) whereas the Nordic hamstring exercise favoured the contribution of the ST compared to SM (P < 0.001, 19/20 participants). Importantly, these tasks affected the contribution of the activation of BF in different ways between individuals. The distribution of activation across the three muscles was well correlated between the two exercises (r values ≥ 0.42).


Asunto(s)
Músculos Isquiosurales/fisiología , Entrenamiento de Fuerza/métodos , Levantamiento de Peso/fisiología , Adolescente , Adulto , Electromiografía , Femenino , Humanos , Masculino , Adulto Joven
16.
Scand J Med Sci Sports ; 30(1): 83-91, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31593612

RESUMEN

The effect of training on hamstring flexibility has been widely assessed through the measurement of the maximal range of motion or passive torque. However, these global measures do not provide direct information on the passive muscle mechanical properties of individual muscle. This characterization is crucial to better understand the effect of interventions as selective adaptations may occur among synergist muscles. Taking advantage of shear wave elastography, we aimed to determine whether elite sport athletes exhibit different passive shear modulus of hamstring heads compared to controls. Passive shear modulus was measured on semitendinosus (ST), semimembranosus (SM), and biceps femoris (BF) using shear wave elastography with the knee flexed at 60° and 90°, and 90° of hip flexion. A total of 97 elite athletes from various sports including running sprint, figure skating, fencing, field hockey, taekwondo, basketball, and soccer and 12 controls were evaluated. The shear modulus measured at 60° of knee flexion was lower in SM for figure skating (P < .001; d = 1.8), taekwondo (P < .001; d = 2.1), fencing (P = .024; d = 1.0), and soccer (P = .011; d = 0.9) compared to controls, while no difference was found for athletic sprinters, field hockey, and basketball players. Shear modulus of the BF and ST muscle was not significantly different between controls and elite athletes, regardless of the sport specialization (all P values = 1). We provide evidence that the shear modulus of the SM is altered in athletes involved in elite sport practice performed over large range of motion and/or including substantial stretching program in training content (taekwondo, figure skating, fencing, and soccer).


Asunto(s)
Atletas , Módulo de Elasticidad , Músculos Isquiosurales/fisiología , Rango del Movimiento Articular , Adolescente , Adulto , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Masculino , Dinamómetro de Fuerza Muscular , Ejercicios de Estiramiento Muscular , Acondicionamiento Físico Humano , Deportes/clasificación , Adulto Joven
17.
Exp Brain Res ; 237(3): 625-635, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30523377

RESUMEN

Individual differences in the distribution of activation between synergist muscles have been reported during a wide variety of tasks. Whether these differences represent actual individual strategies is unknown. The aims of this study were to: (i) test the between-day reliability of the distribution of activation between synergist muscles, (ii) to determine the robustness of these strategies between tasks, and to (iii) describe the inter-individual variability of activation strategies in a large sample size. Eighty-five volunteers performed a series of single-joint isometric tasks with their dominant leg [knee extension and plantarflexion at 25% of maximal voluntary contraction (MVC)] and locomotor tasks (pedalling and walking). Of these participants, 62 performed a second experimental session that included the isometric tasks. Myoelectrical activity of six lower limb muscles (the three superficial heads of the quadriceps and the three heads of the triceps surae) was measured using surface electromyography (EMG) and normalized to that measured during MVC. When considering isometric contractions, distribution of normalized EMG amplitude among synergist muscles, considered here as activation strategies, was highly variable between individuals (15.8% < CV < 42.7%) and robust across days (0.57 < ICC < 0.82). In addition, individual strategies observed during simple single-joint tasks were correlated with those observed during locomotor tasks [0.37 < r < 0.76 for quadriceps (n = 83); 0.30 < r < 0.66 for triceps surae (n = 82); all P < 0.001]. Our results provide evidence that people who bias their activation to a particular muscle do so during multiple tasks. Even though inter-individual variability of EMG signals has been well described, it is often considered noise which complicates the interpretation of data. This study provides evidence that variability results from actual differences in activation strategies.


Asunto(s)
Electromiografía/métodos , Individualidad , Contracción Isométrica/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Músculo Cuádriceps/fisiología , Caminata/fisiología , Adulto Joven
18.
J Exp Biol ; 221(Pt 21)2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30237240

RESUMEN

Little is known about the factors that influence the coordination of synergist muscles that act across the same joint, even during single-joint isometric tasks. The overall aim of this study was to determine the nature of the relationship between the distribution of activation and the distribution of force-generating capacity among the three heads of the triceps surae [soleus (SOL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL)]. Twenty volunteers performed isometric plantarflexions, during which the activation of GM, GL and SOL was estimated using electromyography (EMG). Functional muscle physiological cross-sectional area (PCSA) was estimated using imaging techniques and was considered as an index of muscle force-generating capacity. The distribution of activation and PCSA among the three muscles varied greatly between participants. A significant positive correlation between the distribution of activation and the distribution of PCSA was observed when considering the two bi-articular muscles at intensities ≤50% of the maximal contraction (0.51

Asunto(s)
Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Adulto , Electromiografía , Femenino , Humanos , Masculino , Adulto Joven
19.
Neurourol Urodyn ; 37(1): 206-212, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28407305

RESUMEN

AIMS: Investigation of the function of the striated urogenital sphincter (SUS) is challenging because it is difficult to access and requires invasive measures. Ultrasound shear wave elastography (SWE) is a non-invasive real-time technique used to estimate tissue stiffness. As muscle stiffness can be used as an estimate of muscle force, SWE provides an opportunity to study contraction of the peri-urethral musculature. Validation of SWE to study SUS during functional tasks, such as pelvic floor muscle contractions, is required prior to application in clinical populations. METHODS: Ten healthy females (34[5] years) participated. Stiffness in a region expected to contain the SUS was quantified using SWE at rest and during a pelvic floor muscle contractions performed at 10%, 25%, and 50% of maximal voluntary contraction (MVC). Two repetitions were performed for 10 s. RESULTS: During contraction, stiffness increased in the region of the SUS in all participants and at all contraction intensities. Multiple regions of increased stiffness were detected, with 95.8% of regions situated ventral to the mid-urethra within the anatomical area of the SUS. The increase in stiffness was greater for 50% MVC than both 10% and 25% MVC contraction intensities (P < 0.01). CONCLUSIONS: Stiffness increased within the anatomical region of the SUS during voluntary pelvic floor muscle contractions with predictable response to changes in contraction intensity. These observations support the potential for ultrasound SWE to study SUS function non-invasively.


Asunto(s)
Músculo Estriado/diagnóstico por imagen , Músculo Estriado/fisiología , Diafragma Pélvico/diagnóstico por imagen , Diafragma Pélvico/fisiología , Sistema Urogenital/diagnóstico por imagen , Sistema Urogenital/fisiología , Adulto , Diagnóstico por Imagen de Elasticidad , Electromiografía , Femenino , Humanos , Contracción Muscular/fisiología , Reproducibilidad de los Resultados , Ultrasonografía , Uretra/fisiología
20.
Eur J Appl Physiol ; 118(3): 585-593, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29327169

RESUMEN

PURPOSE: While several studies demonstrated the occurrence of intermuscular mechanical interactions, the physiological significance of these interactions remains a matter of debate. The purpose of this study was to quantify the localized changes in the shear modulus of the gastrocnemius lateralis (GL), monoarticular dorsi- and plantar-flexor muscles induced by a change in knee angle. METHOD: Participants underwent slow passive ankle rotations at the following two knee positions: knee flexed at 90° and knee fully extended. Ultrasound shear wave elastography was used to assess the muscle shear modulus of the GL, soleus [both proximally (SOL-proximal) and distally (SOL distal)], peroneus longus (PERL), and tibialis anterior (TA). This was performed during two experimental sessions (experiment I: n = 11; experiment II: n = 10). The shear modulus of each muscle was compared between the two knee positions. RESULTS: The shear modulus was significantly higher when the knee was fully extended than when the knee was flexed (P < 0.001) for the GL (averaged increase on the whole range of motion: + 5.8 ± 1.3 kPa), SOL distal (+ 4.5 ± 1.5 kPa), PERL (+ 1.1 ± 0.7 kPa), and TA (+ 1.6 ± 1.0 kPa). In contrast, a lower SOL-proximal shear modulus (P < 0.001, - 5.9 ± 1.0 kPa) was observed. CONCLUSION: As the muscle shear modulus is linearly related to passive muscle force, these results provide evidence of a non-negligible intermuscular mechanical interaction between the human lower leg muscles during passive ankle rotations. The role of these interactions in the production of coordinated movements requires further investigation.


Asunto(s)
Tobillo/fisiología , Articulación de la Rodilla/fisiología , Músculo Esquelético/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Contracción Muscular , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA