Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(8): e3001729, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35972940

RESUMEN

Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecosistema , Actividades Humanas , Humanos
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101981

RESUMEN

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles/clasificación , Planeta Tierra , Árboles/crecimiento & desarrollo
3.
J Theor Biol ; 595: 111950, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288889

RESUMEN

Ecological networks experiencing persistent biological invasions may exhibit distinct topological properties, complicating the understanding of how network topology affects disease transmission during invasion-driven community assembly. We developed a trait-based network model to assess the impact of network topology on disease transmission, measured as community- and species-level disease prevalence. We found that trait-based feeding interactions between host species determine the frequency distribution of the niche of co-occurring species in steady-state communities, being either bimodal or multimodal. The width of the growth kernel influences the degree-biomass relationship of species, being either weakly positive or strongly negative. When this relationship is weakly positive, species-level disease prevalence is primarily correlated with biomass. However, when the degree-biomass relationship is strongly negative, species-level disease prevalence is determined by the difference between a host species' in-degree and out-degree closeness centrality. At the community level, disease prevalence is generally amplified by increasing host richness, community biomass, and the standard deviation of interaction generality, while it is diluted by higher network connectance. Our framework verifies the amplification effects of host richness during invasion-driven community assembly and offers valuable insights for estimating disease prevalence based on host network topology.

4.
PLoS Comput Biol ; 19(6): e1011194, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37363914

RESUMEN

Morphometric analysis of wings has been suggested for identifying and controlling isolated populations of tsetse (Glossina spp), vectors of human and animal trypanosomiasis in Africa. Single-wing images were captured from an extensive data set of field-collected tsetse wings of species Glossina pallidipes and G. m. morsitans. Morphometric analysis required locating 11 anatomical landmarks on each wing. The manual location of landmarks is time-consuming, prone to error, and infeasible for large data sets. We developed a two-tier method using deep learning architectures to classify images and make accurate landmark predictions. The first tier used a classification convolutional neural network to remove most wings that were missing landmarks. The second tier provided landmark coordinates for the remaining wings. We compared direct coordinate regression using a convolutional neural network and segmentation using a fully convolutional network for the second tier. For the resulting landmark predictions, we evaluate shape bias using Procrustes analysis. We pay particular attention to consistent labelling to improve model performance. For an image size of 1024 × 1280, data augmentation reduced the mean pixel distance error from 8.3 (95% confidence interval [4.4,10.3]) to 5.34 (95% confidence interval [3.0,7.0]) for the regression model. For the segmentation model, data augmentation did not alter the mean pixel distance error of 3.43 (95% confidence interval [1.9,4.4]). Segmentation had a higher computational complexity and some large outliers. Both models showed minimal shape bias. We deployed the regression model on the complete unannotated data consisting of 14,354 pairs of wing images since this model had a lower computational cost and more stable predictions than the segmentation model. The resulting landmark data set was provided for future morphometric analysis. The methods we have developed could provide a starting point to studying the wings of other insect species. All the code used in this study has been written in Python and open sourced.


Asunto(s)
Aprendizaje Profundo , Moscas Tse-Tse , Animales , Humanos , África
5.
Parasitology ; : 1-15, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39438357

RESUMEN

Mastomys natalensis and M. coucha are commensal rodent species endemic to Africa. A recent taxonomic revision within Mastomys leaves the parasite­host list of M. natalensis questionable and that of M. coucha incomplete. The current study aimed to develop a better understanding of the ectoparasite diversity associated with the 2 distinct but closely related rodent species and to explore the influence of host and habitat type on ectoparasite infestations. Between 2014 and 2020, 590 rodents were trapped in 3 habitat types (village, agriculture and natural) across a wildlife-human/domestic animal interface. In total 48 epifaunistic species (45 ectoparasitic and 3 predatory) represented by 29 genera from 4 taxonomic groups (fleas, lice, mites and ticks) were recorded. Only 50% of the epifauna were shared between the 2 rodent species, with mites the most speciose taxon in both host species. The abundance of epifaunistic individuals, and also those of mites and fleas, were significantly higher on male M. natalensis, while ticks were significantly higher on reproductively active M. natalensis. For both rodent species, infestations by most epifaunistic taxa (on M. natalensis) and some taxa (on M. coucha) were significantly lower in the village as opposed to the less disturbed agricultural and natural habitat types. The study highlights the importance of host life history, even in closely related rodent species, in shaping parasite profiles and a loss of parasite diversity in more extreme anthropogenic habitats.

6.
Mol Ecol ; 32(4): 756-771, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478264

RESUMEN

Biological invasions in remote areas that experience low human activity provide unique opportunities to elucidate processes responsible for invasion success. Here we study the most widespread invasive plant species across the isolated islands of the Southern Ocean, the annual bluegrass, Poa annua. To analyse geographical variation in genome size, genetic diversity and reproductive strategies, we sampled all major sub-Antarctic archipelagos in this region and generated microsatellite data for 470 individual plants representing 31 populations. We also estimated genome sizes for a subset of individuals using flow cytometry. Occasional events of island colonization are expected to result in high genetic structure among islands, overall low genetic diversity and increased self-fertilization, but we show that this is not the case for P. annua. Microsatellite data indicated low population genetic structure and lack of isolation by distance among the sub-Antarctic archipelagos we sampled, but high population structure within each archipelago. We identified high levels of genetic diversity, low clonality and low selfing rates in sub-Antarctic P. annua populations (contrary to rates typical of continental populations). In turn, estimates of selfing declined in populations as genetic diversity increased. Additionally, we found that most P. annua individuals are probably tetraploid and that only slight variation exists in genome size across the Southern Ocean. Our findings suggest multiple independent introductions of P. annua into the sub-Antarctic, which promoted the establishment of genetically diverse populations. Despite multiple introductions, the adoption of convergent reproductive strategies (outcrossing) happened independently in each major archipelago. The combination of polyploidy and a mixed reproductive strategy probably benefited P. annua in the Southern Ocean by increasing genetic diversity and its ability to cope with the novel environmental conditions.


Asunto(s)
Variación Genética , Poliploidía , Humanos , Variación Genética/genética , Reproducción , Geografía , Especies Introducidas , Océanos y Mares , Repeticiones de Microsatélite/genética
7.
Mol Ecol ; 31(6): 1649-1665, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34181792

RESUMEN

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differently impacted by humans. We analysed microsatellite and genome size variation, and then compared the genetic diversity and structure of invasive Poa annua L. on two sub-Antarctic islands: human-occupied Marion Island and unoccupied Prince Edward Island. We also carried out niche modelling to map the potential distribution of the species on both islands. We found high levels of genetic diversity and evidence for extensive admixture between genetically distinct lineages of P. annua on Marion Island. By contrast, the Prince Edward Island populations showed low genetic diversity, no apparent admixture, and had smaller genomes. On both islands, high genetic diversity was apparent at human landing sites, and on Marion Island, also around human settlements, suggesting that these areas received multiple introductions and/or acted as initial introduction sites and secondary sources (bridgeheads) for invasive populations. More than 70 years of continuous human activity associated with a meteorological station on Marion Island led to a distribution of this species around human settlements and along footpaths, which facilitates ongoing gene flow among geographically separated populations. By contrast, this was not the case for Prince Edward Island, where P. annua populations showed high genetic structure. The high levels of genetic variation and admixture in P. annua facilitated by human activity, coupled with high habitat suitability on both islands, suggest that P. annua is likely to increase its distribution and abundance in the future.


Asunto(s)
Flujo Génico , Repeticiones de Microsatélite , Regiones Antárticas , Ecosistema , Variación Genética/genética , Actividades Humanas , Humanos , Islas , Repeticiones de Microsatélite/genética
8.
Microb Ecol ; 82(3): 704-721, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33515051

RESUMEN

Invasive plants often impact soil conditions, notably through changes in soil chemistry and microbial community composition, potentially leading to altered soil functionality. We determine the impacts of invasive nitrogen-fixing Australian Acacia trees on soil chemistry and function (carbon, nitrogen, and phosphorus cycling) in South Africa's Core Cape Subregion, and whether any differences in soil function are linked to differences in soil chemical properties and bacterial community composition between neighbouring acacia-invaded and uninvaded sites. We do so by using Illumina MiSeq sequencing data together with soil chemistry and soil enzyme activity profiles. Acacias significantly increased levels of soil nitrogen (NO3-, NH4+, and total N), C, and pH. Although we did not find evidence that acacias affected soil bacterial community diversity, we did find them to alter bacterial community composition. Acacias also significantly elevated microbial phosphatase activity, but not ß-glucosidase, whilst having contrasting effects on urease. Changes in soil chemical properties under acacia invasion were found to correlate with changes in enzyme activities for urease and phosphatase. Similarly, changes in soil bacterial community composition were correlated to changes in phosphatase enzymatic activity levels under acacia invasion. Whilst we found evidence for acacias altering soil function by changing soil chemical properties and bacterial community composition, these impacts appear to be specific to local site conditions.


Asunto(s)
Acacia , Microbiota , Australia , Nutrientes , Suelo , Microbiología del Suelo
9.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32663906

RESUMEN

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Asunto(s)
Biodiversidad , Especies Introducidas , Cambio Climático , Ecosistema , Predicción , Humanos
10.
J Theor Biol ; 490: 110174, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31987878

RESUMEN

Broad evidence has shown that host diversity can impede disease invasion and reduce the eventual prevalence, but little is known on how species interactions play in shaping this host diversity-disease relationship. Previous work has illustrated that intraguild predation (IGP), combined with parasite-mediated indirect effects, can have strong influences on parasitic infection. Following this line of thinking, we here examine the role of predatory interactions in the disease transmission within a multihost community. Through varying fractions of IGP in a competitive community, we show that, dependent on the fraction of predatory interactions, species richness can switch from enhancing to inhibiting disease establishment/prevalence. Without IGP interactions, high host species richness can likely weaken the 'dilution effect' and in some cases even enhance the disease establishment (and/or prevalence) due to the existence of alternative sources for infection, whereas IGP can generally heighten the negative diversity-disease relationship due to the reduction of encounter rate between prospective hosts and parasites. Although trait-mediated interactions (captured as the infection-induced changes in predation rate) only weakly affect disease prevalence, density-mediated interactions (captured as the additional infection-induced mortality) can pose a relatively strong influence on disease transmission. Our results thus underline the importance of considering species interactions when investigating the host diversity-disease relationship.


Asunto(s)
Parásitos , Conducta Predatoria , Animales , Cadena Alimentaria , Interacciones Huésped-Parásitos , Estudios Prospectivos
11.
J Theor Biol ; 506: 110374, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32634386

RESUMEN

It is well recognized that spatial heterogeneity and overall productivity have important consequences for the diversity and community structure of food webs. Yet, few, if any, studies have considered the effects of heterogeneous spatial distributions of primary production. Here, we theoretically investigate how the variance and autocorrelation length of primary production affect properties of evolved food webs consisting of one autotroph and several heterotrophs. We report the following findings. (1) Diversity increases with landscape variance and is unimodal in autocorrelation length. (2) Trophic level increases with landscape variance and is unimodal in autocorrelation length. (3) The extent to which the spatial distribution of heterotrophs differ from that of the autotroph increases with landscape variance and decreases with autocorrelation length. (4) Components of initial disruptive selection experienced by the ancestral heterotroph predict properties of the final evolved communities. Prior to our study reported here, several authors had hypothesized that diversity increases with the landscape variance of productivity. Our results support their hypothesis and contribute new facets by providing quantitative predictions that also account for autocorrelation length and additional properties of the evolved communities.


Asunto(s)
Ecosistema , Cadena Alimentaria
12.
Proc Natl Acad Sci U S A ; 114(47): 12507-12511, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109261

RESUMEN

Population demography is central to fundamental ecology and for predicting range shifts, decline of threatened species, and spread of invasive organisms. There is a mismatch between most demographic work, carried out on few populations and at local scales, and the need to predict dynamics at landscape and regional scales. Inspired by concepts from landscape ecology and Markowitz's portfolio theory, we develop a landscape portfolio platform to quantify and predict the behavior of multiple populations, scaling up the expectation and variance of the dynamics of an ensemble of populations. We illustrate this framework using a 35-y time series on gypsy moth populations. We demonstrate the demography accumulation curve in which the collective growth of the ensemble depends on the number of local populations included, highlighting a minimum but adequate number of populations for both regional-scale persistence and cross-scale inference. The attainable set of landscape portfolios further suggests tools for regional population management for both threatened and invasive species.


Asunto(s)
Especies Introducidas , Modelos Estadísticos , Mariposas Nocturnas/fisiología , Animales , Simulación por Computador , Ecosistema , Especies en Peligro de Extinción , Dinámica Poblacional
13.
Parasitol Res ; 119(11): 3603-3616, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32996052

RESUMEN

Nest design and characteristics can influence the microclimatic conditions in the nest. Nest-dwelling ectoparasites are sensitive to temperature and moisture and as such the conditions in the nest can influence parasite infestations. The endangered African penguin (Spheniscus demersus) breeds in different nest types and as yet little is known with regard to the microclimate and parasite infestation within these nests. This study characterized the microclimatic conditions in natural open, natural covered (with vegetation) and artificial nests, and assessed the relationship between nest characteristics (type, age, distance from the coast, orientation and entrance opening) and in-nest ectoparasite infestations and the health of African penguins in Stony Point, South Africa. Penguins (50 adults and 192 chicks) and their nests (n = 308) were sampled in 2016 and 2017. Soil temperature was higher in artificial than in natural nests, and soil and nest material moisture was lower in artificial and natural covered nests than natural open. Ectoparasite infestations were higher under warmer and drier conditions, in artificial nests and nests near the coastline. Penguin (adult and chick) body mass and chick body condition were lower in warmer nests and total plasma protein (in adults and checks) was lower in drier nests. Given the potential adverse effects of ectoparasites on host species, it is recommended that conservation agencies implement a monitoring programme to assess the ectoparasite infestation in artificial nests across multiple colonies. This information will facilitate a more holistic penguin conservation management plan that may prevent further detrimental effects on this endangered penguin species.


Asunto(s)
Infestaciones Ectoparasitarias/veterinaria , Microclima , Spheniscidae/parasitología , Animales , Infestaciones Ectoparasitarias/etiología , Infestaciones Ectoparasitarias/parasitología , Especies en Peligro de Extinción , Comportamiento de Nidificación , Sudáfrica , Temperatura
14.
Ecol Appl ; 29(8): e01991, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31400182

RESUMEN

In the six decades since 1960, the oriental fruit fly, Bactrocera dorsalis (Hendel), has been announced successfully eradicated in California by the U.S. Department of Agriculture a total of 564 times. This includes eradication declarations in one city a total of 25 different years, in 12 cities 8-19 different years, and in 101 cities 2-7 different years. We here show that the false negatives in declaring elimination success hinge on the easily achieved regulatory criteria, which have virtually guaranteed the failure of complete extirpation of this pest. Analyses of the time series of fly detection over California placed on a grid of 100-km2 cells revealed (1) partial success of the eradication program in controlling the invasion of the oriental fruit fly; (2) low prevalence of the initial detection in these cells is often followed by high prevalence of recurrences; (3) progressively shorter intervals between years of consecutive detections; and (4) high likelihood of early-infested cells also experiencing the most frequent outbreaks. Facing the risk of recurrent invasions, such short-term eradication programs have only succeeded annually according to the current regulatory criteria but have failed to achieve the larger goal of complete extirpation of the oriental fruit fly. Based on the components and running costs of the current programs, we further estimated the efficiency of eradication programs with different combinations of eradication radius, duration, and edge impermeability in reducing invasion recurrences and slowing the spread of the oriental fruit fly. We end with policy implications including the need for agricultural agencies worldwide to revisit eradication protocols in which monitoring and treatments are terminated when the regulatory criteria for declaring eradication are met. Our results also have direct implications to invasion biologists and agriculture policy makers regarding long-term risks of short-term expediency.


Asunto(s)
Tephritidae , Animales , California , Recurrencia , Estados Unidos
15.
Parasitology ; 146(6): 791-804, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30724152

RESUMEN

The African penguin (Spheniscus demersus) is a critically endangered species endemic to southern Africa. Limited information is available on the parasite diversity associated with the species in natural settings. This study explores the diversity and incidence of parasites associated with African penguins and their nests, and records the effect of host and environmental factors on parasite infestation. Ecto-, haemo- and helminth parasites were recorded from 210 adult birds, 583 chicks and 628 nests across five colonies (two mainland and three islands) along the south-western coast of South Africa, in 2016 and 2017. Mean nest density (total and active nests) and climate variables (temperature and precipitation) were obtained for each colony. Parapsyllus humboldti was the most abundant and prevalent ectoparasite on penguins and in nests (69.10 and 57.80%, respectively), while Piroplasmorida/Haemospororida (33.51%) and Cardiocephaloides spp. (56.17%) were the most prevalent haemo- and helminth parasites of penguins, respectively. In general parasite abundance and prevalence was significantly affected by penguin age (chicks vs adults), location (mainland vs islands), nest density (total and active nests) and season (spring vs autumn/winter). It is concluded that parasite infestations are structured and that penguin chicks at mainland colonies are more susceptible to parasite infestations during spring.


Asunto(s)
Biodiversidad , Parásitos/clasificación , Parásitos/aislamiento & purificación , Enfermedades Parasitarias en Animales/epidemiología , Enfermedades Parasitarias en Animales/parasitología , Spheniscidae/parasitología , Animales , Incidencia , Prevalencia , Sudáfrica/epidemiología
17.
Proc Biol Sci ; 285(1880)2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899068

RESUMEN

Animal body armour is often considered an adaptation that protects prey against predatory attacks, yet comparative studies that link the diversification of these allegedly protective coverings to differential predation risk or pressure are scarce. Here, we examine the evolution of body armour, including spines and osteoderms, in Cordylinae, a radiation of southern African lizards. Using phylogenetic comparative methods, we attempt to identify the ecological and environmental correlates of body armour that may hint at the selective pressures responsible for defensive trait diversification. Our results show that species inhabiting arid environments are more likely to possess elaborated body armour, specifically osteoderms. We did not find any effect of estimated predation pressure or risk on the degree of body armour. These findings suggest that body armour might not necessarily evolve in response to direct interactions with predators, but rather as a result of increased habitat-mediated predation risk. Furthermore, we discuss the possibility that osteoderms might have been shaped by factors unrelated to predation.


Asunto(s)
Evolución Biológica , Ecosistema , Cadena Alimentaria , Lagartos/anatomía & histología , África , Animales , Filogenia
18.
Ecology ; 99(7): 1602-1609, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29727477

RESUMEN

The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on (1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on (2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree of plant specificity.


Asunto(s)
Ecosistema , Herbivoria , Animales , Cadena Alimentaria , Plantas , Conducta Predatoria , Sudáfrica
19.
Ecology ; 99(12): 2763-2775, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30289566

RESUMEN

Communities comprising alien species with different residence times are natural experiments allowing the assessment of drivers of community assembly over time. Stochastic processes (such as dispersal and fluctuating environments) should be the dominant factors structuring communities of exotic species with short residence times. In contrast, communities should become more similar, or systematically diverge, if they contain exotics with increasing resident times, due to the increasing importance of deterministic processes (such as environmental filtering). We use zeta diversity (the number of species shared by multiple assemblages) to explore the relationship between the turnover of native species and two categories of alien species with different residence times (archaeophytes [introduced between 4000 BC and 1500 AD] and neophytes [introduced after 1500 AD]) in a network of nature reserves in central Europe. By considering multiple assemblages simultaneously, zeta diversity allows us to determine the contribution of rare and widespread species to turnover. Specifically, we explore the relative effects of assembly processes representing isolation by distance, environmental filtering, and environmental stochasticity (fluctuating environments) on zeta diversity using Multi-Site Generalized Dissimilarity Modelling (MS-GDM). Four clusters of results emerged. First, stochastic processes for structuring plant assemblages decreased in importance with increasing residence time. Environmental stochasticity only affected species composition for neophytes, offering possibilities to predict the spread debt of recent invasions. Second, native species turnover was well explained by environmental filtering and isolation by distance, although these factors did not explain the turnover of archaeophytes and neophytes. Third, native and alien species compositions were only correlated for rare species, whereas turnover in widespread alien species was surprisingly unrelated to the composition of widespread native species. Site-specific approaches would therefore be more appropriate for the monitoring and management of rare alien species, whereas species-specific approaches would suit widespread species. Finally, the size difference of nature reserves influences not only native species richness, but also their richness-independent turnover. A network of reserves must therefore be designed and managed using a variety of approaches to enhance native diversity, while controlling alien species with different residence times and degrees of commonness.


Asunto(s)
Especies Introducidas , Plantas , Biodiversidad , Europa (Continente) , Especificidad de la Especie
20.
J Theor Biol ; 454: 146-153, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29885411

RESUMEN

Ecological and evolutionary dynamics observed in mutualistic communities can be shaped by several mechanisms, including ecological interactions and their co-evolutionary consequences. Here we explore how intra and interspecific competition, together with mutualistic interactions, can affect community assembly through their effects on adaptive diversification and the emergence of biodiversity. To capture both ecological and evolutionary processes simultaneously, we used the adaptive dynamics approach based on a Lotka-Volterra framework and simulated the ecological dynamics of populations as well as the evolutionary dynamics of phenotypic traits. Depending on the initial trait values, two possible alternative evolutionary regimes emerged: traits evolve towards either optimal utilization of environmental resources or maximizing the benefits from mutualistic interactions. Diversification and overall biodiversity are mostly driven by frequency-dependent competition, while mutualism plays an important role in enhancing ecosystem productivity and evolutionary stability. Because different initial trait values in a community can lead to alternative evolutionary regimes, species loss and biological invasions could not only alter ecological dynamics but also push the system onto an alternative successional climax or evolutionary end point. It thus becomes essential to clarify the past evolutionary dynamics so as to draw conclusions on key community assembly processes.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecosistema , Simbiosis/fisiología , Adaptación Biológica/genética , Adaptación Biológica/fisiología , Animales , Humanos , Modelos Biológicos , Herencia Multifactorial/fisiología , Fenotipo , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA