Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626762

RESUMEN

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Asunto(s)
Mosaicismo , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Humanos , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Cerebelo/metabolismo , Cerebelo/patología , Anciano , Encéfalo/metabolismo , Encéfalo/patología , Ataxina-1/genética
2.
Hum Mol Genet ; 31(21): 3581-3596, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35147158

RESUMEN

Pathogenesis of the inherited neurodegenerative disorder Huntington's disease (HD) is progressive with a long presymptomatic phase in which subtle changes occur up to 15 years before the onset of symptoms. Thus, there is a need for early, functional biomarker to better understand disease progression and to evaluate treatment efficacy far from onset. Recent studies have shown that white matter may be affected early in mutant HTT gene carriers. A previous study performed on 12 months old Ki140CAG mice showed reduced glutamate level measured by Chemical Exchange Saturation Transfer of glutamate (gluCEST), especially in the corpus callosum. In this study, we scanned longitudinally Ki140CAG mice with structural MRI, diffusion tensor imaging, gluCEST and magnetization transfer imaging, in order to assess white matter integrity over the life of this mouse model characterized by slow progression of symptoms. Our results show early defects of diffusion properties in the anterior part of the corpus callosum at 5 months of age, preceding gluCEST defects in the same region at 8 and 12 months that spread to adjacent regions. At 12 months, frontal and piriform cortices showed reduced gluCEST, as well as the pallidum. MT imaging showed reduced signal in the septum at 12 months. Cortical and striatal atrophy then appear at 18 months. Vulnerability of the striatum and motor cortex, combined with alterations of anterior corpus callosum, seems to point out the potential role of white matter in the brain dysfunction that characterizes HD and the pertinence of gluCEST and DTI as biomarkers in HD.


Asunto(s)
Enfermedad de Huntington , Sustancia Blanca , Animales , Ratones , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Sustancia Blanca/patología , Imagen de Difusión Tensora/métodos , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Modelos Animales de Enfermedad , Ácido Glutámico
3.
EMBO J ; 34(17): 2255-71, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26165689

RESUMEN

Cleavage of mutant huntingtin (HTT) is an essential process in Huntington's disease (HD), an inherited neurodegenerative disorder. Cleavage generates N-ter fragments that contain the polyQ stretch and whose nuclear toxicity is well established. However, the functional defects induced by cleavage of full-length HTT remain elusive. Moreover, the contribution of non-polyQ C-terminal fragments is unknown. Using time- and site-specific control of full-length HTT proteolysis, we show that specific cleavages are required to disrupt intramolecular interactions within HTT and to cause toxicity in cells and flies. Surprisingly, in addition to the canonical pathogenic N-ter fragments, the C-ter fragments generated, that do not contain the polyQ stretch, induced toxicity via dilation of the endoplasmic reticulum (ER) and increased ER stress. C-ter HTT bound to dynamin 1 and subsequently impaired its activity at ER membranes. Our findings support a role for HTT on dynamin 1 function and ER homoeostasis. Proteolysis-induced alteration of this function may be relevant to disease.


Asunto(s)
Dinamina I/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Péptidos/metabolismo , Proteolisis , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Proteínas de Drosophila , Drosophila melanogaster , Dinamina I/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Péptidos/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
4.
Brain ; 141(5): 1434-1454, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534157

RESUMEN

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington's disease. Recent data obtained in studies related to cancer suggest DCLK3 could have an anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington's disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington's disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodelling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including the transcriptional activator adaptor TADA3, a core component of the Spt-ada-Gcn5 acetyltransferase (SAGA) complex which links histone acetylation to the transcription machinery. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodelling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration.


Asunto(s)
Cuerpo Estriado/enzimología , Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas Similares a Doblecortina , Regulación hacia Abajo/genética , Complejo IV de Transporte de Electrones/metabolismo , Fuerza de la Mano/fisiología , Enfermedad de Huntington/genética , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
PLoS Biol ; 13(5): e1002142, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25942483

RESUMEN

The establishment of apical-basolateral polarity is important for both normal development and disease, for example, during tumorigenesis and metastasis. During this process, polarity complexes are targeted to the apical surface by a RAB11A-dependent mechanism. Huntingtin (HTT), the protein that is mutated in Huntington disease, acts as a scaffold for molecular motors and promotes microtubule-based dynamics. Here, we investigated the role of HTT in apical polarity during the morphogenesis of the mouse mammary epithelium. We found that the depletion of HTT from luminal cells in vivo alters mouse ductal morphogenesis and lumen formation. HTT is required for the apical localization of PAR3-aPKC during epithelial morphogenesis in virgin, pregnant, and lactating mice. We show that HTT forms a complex with PAR3, aPKC, and RAB11A and ensures the microtubule-dependent apical vesicular translocation of PAR3-aPKC through RAB11A. We thus propose that HTT regulates polarized vesicular transport, lumen formation and mammary epithelial morphogenesis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Epitelio/embriología , Morfogénesis , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteína Quinasa C/metabolismo , Vesículas Transportadoras/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Perros , Femenino , Humanos , Proteína Huntingtina , Células de Riñón Canino Madin Darby , Glándulas Mamarias Animales/embriología , Ratones , Embarazo , Proteínas de Unión al GTP rab/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(47): 16889-94, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385587

RESUMEN

Although dominant gain-of-function triplet repeat expansions in the Huntingtin (HTT) gene are the underlying cause of Huntington disease (HD), understanding the normal functions of nonmutant HTT protein has remained a challenge. We report here findings that suggest that HTT plays a significant role in selective autophagy. Loss of HTT function in Drosophila disrupts starvation-induced autophagy in larvae and conditional knockout of HTT in the mouse CNS causes characteristic cellular hallmarks of disrupted autophagy, including an accumulation of striatal p62/SQSTM1 over time. We observe that specific domains of HTT have structural similarities to yeast Atg proteins that function in selective autophagy, and in particular that the C-terminal domain of HTT shares structural similarity to yeast Atg11, an autophagic scaffold protein. To explore possible functional similarity between HTT and Atg11, we investigated whether the C-terminal domain of HTT interacts with mammalian counterparts of yeast Atg11-interacting proteins. Strikingly, this domain of HTT coimmunoprecipitates with several key Atg11 interactors, including the Atg1/Unc-51-like autophagy activating kinase 1 kinase complex, autophagic receptor proteins, and mammalian Atg8 homologs. Mutation of a phylogenetically conserved WXXL domain in a C-terminal HTT fragment reduces coprecipitation with mammalian Atg8 homolog GABARAPL1, suggesting a direct interaction. Collectively, these data support a possible central role for HTT as an Atg11-like scaffold protein. These findings have relevance to both mechanisms of disease pathogenesis and to therapeutic intervention strategies that reduce levels of both mutant and normal HTT.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila , Proteína Huntingtina , Ratones , Proteínas Asociadas a Microtúbulos/genética
7.
J Neurosci ; 34(30): 10034-40, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25057205

RESUMEN

A polyglutamine expansion in huntingtin (HTT) causes the specific death of adult neurons in Huntington's disease (HD). Most studies have thus focused on mutant HTT (mHTT) toxicity in adulthood, and its developmental effects have been largely overlooked. We found that mHTT caused mitotic spindle misorientation in cultured cells by altering the localization of dynein, NuMA, and the p150(Glued) subunit of dynactin to the spindle pole and cell cortex and of CLIP170 and p150(Glued) to microtubule plus-ends. mHTT also affected spindle orientation in dividing mouse cortical progenitors, altering the thickness of the developing cortex. The serine/threonine kinase Akt, which regulates HTT function, rescued the spindle misorientation caused by the mHTT, by serine 421 (S421) phosphorylation, in cultured cells and in mice. Thus, cortical development is affected in HD, and this early defect can be rescued by HTT phosphorylation at S421.


Asunto(s)
División Celular/genética , Proteínas Mutantes/genética , Neocórtex/crecimiento & desarrollo , Neocórtex/patología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células Madre/patología , Animales , Células Cultivadas , Femenino , Células HeLa , Humanos , Proteína Huntingtina , Masculino , Ratones , Mutación/genética , Fosforilación/genética , Huso Acromático/genética
8.
J Neurosci ; 33(20): 8608-20, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23678106

RESUMEN

Huntington disease (HD) is associated with early psychiatric symptoms including anxiety and depression. Here, we demonstrate that wild-type huntingtin, the protein mutated in HD, modulates anxiety/depression-related behaviors according to its phosphorylation at serines 1181 and 1201. Genetic phospho-ablation at serines 1181 and 1201 in mouse reduces basal levels of anxiety/depression-like behaviors. We observe that the reduction in anxiety/depression-like phenotypes is associated with increased adult hippocampal neurogenesis. By improving the attachment of molecular motors to microtubules, huntingtin dephosphorylation increases axonal transport of BDNF, a crucial factor for hippocampal adult neurogenesis. Consequently, the huntingtin-mediated increased BDNF dynamics lead to an increased delivery and signaling of hippocampal BDNF. These results support the notion that huntingtin participates in anxiety and depression-like behavior and is thus relevant to the etiology of mood disorders and anxiety/depression in HD.


Asunto(s)
Ansiedad/patología , Depresión/patología , Hipocampo/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Proteínas Nucleares/metabolismo , Análisis de Varianza , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Bromodesoxiuridina/metabolismo , Depresión/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Huntingtina , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Neurogénesis/fisiología , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Fosforilación/genética , Transporte de Proteínas/genética , Serina/genética , Serina/metabolismo
9.
EMBO J ; 29(14): 2433-45, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20531388

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder causing selective neuronal death in the brain. Dysfunction of the ubiquitin-proteasome system may contribute to the disease; however, the exact mechanisms are still unknown. We report here a new pathological mechanism by which mutant huntingtin specifically interferes with the degradation of beta-catenin. Huntingtin associates with the beta-catenin destruction complex that ensures its equilibrated degradation. The binding of beta-catenin to the destruction complex is altered in HD, leading to the toxic stabilization of beta-catenin. As a consequence, the beta-transducin repeat-containing protein (beta-TrCP) rescues polyglutamine (polyQ)-huntingtin-induced toxicity in striatal neurons and in a Drosophila model of HD, through the specific degradation of beta-catenin. Finally, the non-steroidal anti-inflammatory drug indomethacin that decreases beta-catenin levels has a neuroprotective effect in a neuronal model of HD and in Drosophila and increases the lifespan of HD flies. We thus suggest that restoring beta-catenin homeostasis in HD is of therapeutic interest.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteínas de Drosophila/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Proteínas del Tejido Nervioso , Proteínas Nucleares , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Antiinflamatorios no Esteroideos/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/fisiopatología , Indometacina/metabolismo , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Interferencia de ARN , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
J Biol Chem ; 287(2): 1361-70, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22123819

RESUMEN

Brain energy deficit has been a suggested cause of Huntington disease (HD), but ATP depletion has not reliably been shown in preclinical models, possibly because of the immediate post-mortem changes in cellular energy metabolism. To examine a potential role of a low energy state in HD, we measured, for the first time in a neurodegenerative model, brain levels of high energy phosphates using microwave fixation, which instantaneously inactivates brain enzymatic activities and preserves in vivo levels of analytes. We studied HD transgenic R6/2 mice at ages 4, 8, and 12 weeks. We found significantly increased creatine and phosphocreatine, present as early as 4 weeks for phosphocreatine, preceding motor system deficits and decreased ATP levels in striatum, hippocampus, and frontal cortex of R6/2 mice. ATP and phosphocreatine concentrations were inversely correlated with the number of CAG repeats. Conversely, in mice injected with 3-nitroproprionic acid, an acute model of brain energy deficit, both ATP and phosphocreatine were significantly reduced. Increased creatine and phosphocreatine in R6/2 mice was associated with decreased guanidinoacetate N-methyltransferase and creatine kinase, both at the protein and RNA levels, and increased phosphorylated AMP-dependent protein kinase (pAMPK) over AMPK ratio. In addition, in 4-month-old knock-in Hdh(Q111/+) mice, the earliest metabolic alterations consisted of increased phosphocreatine in the frontal cortex and increased the pAMPK/AMPK ratio. Altogether, this study provides the first direct evidence of chronic alteration in homeostasis of high energy phosphates in HD models in the earliest stages of the disease, indicating possible reduced utilization of the brain phosphocreatine pool.


Asunto(s)
Adenosina Trifosfato/metabolismo , Química Encefálica , Metabolismo Energético , Lóbulo Frontal/metabolismo , Enfermedad de Huntington/metabolismo , Fosfocreatina/metabolismo , Adenosina Trifosfato/genética , Animales , Convulsivantes/farmacología , Modelos Animales de Enfermedad , Lóbulo Frontal/patología , Técnicas de Sustitución del Gen , Guanidinoacetato N-Metiltransferasa/genética , Guanidinoacetato N-Metiltransferasa/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nitrocompuestos/farmacología , Fosfocreatina/genética , Propionatos/farmacología
11.
Mutat Res ; 755(2): 115-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23830927

RESUMEN

The age at onset of Huntington disease (HD) shows a strong, negative correlation with the number of CAG repeats within the huntingtin (HTT) gene. However, this does not account for all the inter-individual variability seen among patients. In order to assess whether single-nucleotide polymorphisms (SNPs) in the OGG1 and XPC genes, both implicated in responses to oxidative stress, are associated with the age of onset of HD, 9 SNPs have been genotyped in 299 individuals with HD and 582 controls. After correction for multiple testing, two OGG1/XPC haplotypes were found to be associated with younger age at onset independently of the number of CAG repeats within the HTT gene. Both haplotypes contain XPC coding variants that would be expected to impact on protein function and/or variants in the 3'UTR that could result in altered protein levels via allele-specific mIR binding. One haplotype also contains the OGG1-326Cys (rs1052133) allele that has been associated with a lower 8-oxoG repair activity and is particularly sensitive to the cellular redox status. These results highlight the potential role of oxidative stress in determining the age at onset of HD.


Asunto(s)
ADN Glicosilasas/genética , Proteínas de Unión al ADN/genética , Haplotipos/genética , Enfermedad de Huntington/genética , Polimorfismo de Nucleótido Simple , Regiones no Traducidas 3'/genética , Adulto , Edad de Inicio , Daño del ADN , ADN Glicosilasas/fisiología , Reparación del ADN/genética , Proteínas de Unión al ADN/fisiología , Femenino , Genotipo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/epidemiología , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Estrés Oxidativo/genética , ARN Mensajero/metabolismo , Repeticiones de Trinucleótidos
12.
Neuron ; 111(18): 2881-2898.e12, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37442131

RESUMEN

In the adult mammalian central nervous system (CNS), axons fail to regenerate spontaneously after injury because of a combination of extrinsic and intrinsic factors. Despite recent advances targeting the intrinsic regenerative properties of adult neurons, the molecular mechanisms underlying axon regeneration are not fully understood. Here, we uncover a regulatory mechanism that controls the expression of key proteins involved in regeneration at the translational level. Our results show that mRNA-specific translation is critical for promoting axon regeneration. Indeed, we demonstrate that specific ribosome-interacting proteins, such as the protein Huntingtin (HTT), selectively control the translation of a specific subset of mRNAs. Moreover, modulating the expression of these translationally regulated mRNAs is crucial for promoting axon regeneration. Altogether, our findings highlight that selective translation through the customization of the translational complex is a key mechanism of axon regeneration with major implications in the development of therapeutic strategies for CNS repair.


Asunto(s)
Axones , Regeneración Nerviosa , Animales , Axones/metabolismo , Regeneración Nerviosa/genética , Sistema Nervioso Central/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Mamíferos/metabolismo
13.
J Gen Physiol ; 155(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409218

RESUMEN

The expression of the Huntingtin protein, well known for its involvement in the neurodegenerative Huntington's disease, has been confirmed in skeletal muscle. The impact of HTT deficiency was studied in human skeletal muscle cell lines and in a mouse model with inducible and muscle-specific HTT deletion. Characterization of calcium fluxes in the knock-out cell lines demonstrated a reduction in excitation-contraction (EC) coupling, related to an alteration in the coupling between the dihydropyridine receptor and the ryanodine receptor, and an increase in the amount of calcium stored within the sarcoplasmic reticulum, linked to the hyperactivity of store-operated calcium entry (SOCE). Immunoprecipitation experiments demonstrated an association of HTT with junctophilin 1 (JPH1) and stromal interaction molecule 1 (STIM1), both providing clues on the functional effects of HTT deletion on calcium fluxes. Characterization of muscle strength and muscle anatomy of the muscle-specific HTT-KO mice demonstrated that HTT deletion induced moderate muscle weakness and mild muscle atrophy associated with histological abnormalities, similar to the phenotype observed in tubular aggregate myopathy. Altogether, this study points toward the hypotheses of the involvement of HTT in EC coupling via its interaction with JPH1, and on SOCE via its interaction with JPH1 and/or STIM1.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Ratones , Humanos , Animales , Calcio/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Retículo Sarcoplasmático/metabolismo , Músculo Esquelético/metabolismo , Acoplamiento Excitación-Contracción/fisiología
14.
EMBO J ; 27(15): 2124-34, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18615096

RESUMEN

The transport of vesicles in neurons is a highly regulated process, with vesicles moving either anterogradely or retrogradely depending on the nature of the molecular motors, kinesins and dynein, respectively, which propel vesicles along microtubules (MTs). However, the mechanisms that determine the directionality of transport remain unclear. Huntingtin, the protein mutated in Huntington's disease, is a positive regulatory factor for vesicular transport. Huntingtin is phosphorylated at serine 421 by the kinase Akt but the role of this modification is unknown. Here, we demonstrate that phosphorylation of wild-type huntingtin at S421 is crucial to control the direction of vesicles in neurons. When phosphorylated, huntingtin recruits kinesin-1 to the dynactin complex on vesicles and MTs. Using brain-derived neurotrophic factor as a marker of vesicular transport, we demonstrate that huntingtin phosphorylation promotes anterograde transport. Conversely, when huntingtin is not phosphorylated, kinesin-1 detaches and vesicles are more likely to undergo retrograde transport. This also applies to other vesicles suggesting an essential role for huntingtin in the control of vesicular directionality in neurons.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Transporte Biológico Activo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Complejo Dinactina , Humanos , Proteína Huntingtina , Cinesinas/fisiología , Ratones , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Fosforilación , Ratas , Proteínas de Transporte Vesicular/fisiología
15.
C R Biol ; 345(2): 77-90, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847466

RESUMEN

Huntington's disease is a rare inherited neurological disorder that generally manifests in mild-adulthood. The disease is characterized by the dysfunction and the degeneration of specific brain structures leading progressively to psychiatric, cognitive and motor disorders. The disease is caused by a mutation in the gene coding for huntingtin and, although it appears in adulthood, embryos carry the mutated gene from their development in utero. Studies based on mouse models and human stem cells have reported altered developmental mechanisms in disease conditions. However, does the mutation affect development in humans? Focusing on the early stages of brain development in human fetuses carrying the HD mutation, we have identified abnormalities in the development of the neocortex, the structure that ensure higher cerebral functions. Altogether, these studies suggests that developmental defects could contribute to the onset symptoms in adults, changing the perspective on disease and thus the health care of patients.


La maladie de Huntington est une maladie neurologique, rare et héréditaire, se manifestant généralement à l'âge adulte. Cette pathologie, caractérisée par la dysfonction et la dégénérescence de certaines structures cérébrales, conduit à des troubles psychiatriques, cognitifs et moteurs s'aggravant progressivement. La maladie est due à la mutation du gène codant pour la huntingtine et, bien qu'elle apparaisse à l'âge adulte, les embryons dès leur développement sont porteurs du gène muté. Les études, basées sur l'utilisation de modèles murins et de cellules souches humaines, montrent des mécanismes développementaux altérés en condition pathologique. Cependant, la mutation affecte-t-elle le développement chez l'Homme ? En nous intéressant aux stades précoces du développement cérébral de fœtus humains porteurs du gène muté, nous avons mis en évidence des anomalies du développement du néocortex, siège des grandes fonctions cérébrales. L'ensemble de ces travaux suggère que des défauts développementaux pourraient contribuer à l'apparition des symptômes adultes, changeant ainsi la vision de la maladie et de sa prise en charge.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Adulto , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/psicología , Encéfalo , Proteína Huntingtina/genética , Modelos Animales de Enfermedad
16.
Sci Adv ; 8(1): eabj8812, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985962

RESUMEN

When a neurotrophin binds at the presynapse, it sends survival signals all the way to the nucleus on signaling endosomes. These endosomes fuel their own journey with on-board glycolysis­but how is that journey initiated and maintained? Using microfluidic devices and mice, we find that the calcium released upon brain-derived neurotrophic factor (BDNF) binding to its receptor, tropomyosin receptor kinase B (TrkB), is sensed by calcineurin on the cytosolic face of the endosome. Calcineurin dephosphorylates huntingtin, the BDNF scaffold, which sets the endosome moving in a retrograde direction. In an in vitro reconstituted microtubule transport system, controlled calcium uncaging prompts purified vesicles to move to the microtubule minus end. We observed similar retrograde waves of TrkA- and epidermal growth factor receptor (EGFR)-bearing endosomes. Signaling endosomes in neurons thus carry not only their own fuel, but their own navigational system.

17.
Cell Rep ; 40(9): 111261, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044862

RESUMEN

Compelling evidence indicates that in Huntington's disease (HD), mutation of huntingtin (HTT) alters several aspects of early brain development such as synaptogenesis. It is not clear to what extent the partial loss of wild-type HTT function contributes to these abnormalities. Here we investigate the function of HTT in the formation of spines. Although larger spines normally correlate with more synaptic activity, cell-autonomous depletion of HTT leads to enlarged spines but reduced excitatory synaptic function. We find that HTT is required for the proper turnover of endogenous actin and to recruit AMPA receptors at active synapses; loss of HTT leads to LIM kinase (LIMK) hyperactivation, which maintains cofilin in its inactive state. HTT therefore influences actin dynamics through the LIMK-cofilin pathway. Loss of HTT uncouples spine structure from synaptic function, which may contribute to the ultimate development of HD symptoms.


Asunto(s)
Factores Despolimerizantes de la Actina , Espinas Dendríticas , Proteína Huntingtina , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Espinas Dendríticas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Ratones , Sinapsis/metabolismo
18.
Neuron ; 110(1): 36-50.e5, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34793694

RESUMEN

Although the classic symptoms of Huntington's disease (HD) manifest in adulthood, neural progenitor cell behavior is already abnormal by 13 weeks' gestation. To determine how these developmental defects evolve, we turned to cell and mouse models. We found that layer II/III neurons that normally connect the hemispheres are limited in their growth in HD by microtubule bundling defects within the axonal growth cone, so that fewer axons cross the corpus callosum. Proteomic analyses of the growth cones revealed that NUMA1 (nuclear/mitotic apparatus protein 1) is downregulated in HD by miR-124. Suppressing NUMA1 in wild-type cells recapitulates the microtubule and axonal growth defects of HD, whereas raising NUMA1 levels with antagomiR-124 or stabilizing microtubules with epothilone B restores microtubule organization and rescues axonal growth. NUMA1 therefore regulates the microtubule network in the growth cone, and HD, which is traditionally conceived as a disease of intracellular trafficking, also disturbs the cytoskeletal network.


Asunto(s)
Enfermedad de Huntington , Animales , Axones/metabolismo , Proteínas de Ciclo Celular/metabolismo , Conos de Crecimiento/fisiología , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Microtúbulos/metabolismo , Proteómica
19.
Science ; 377(6613): eabq5011, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137051

RESUMEN

Recent evidence has shown that even mild mutations in the Huntingtin gene that are associated with late-onset Huntington's disease (HD) disrupt various aspects of human neurodevelopment. To determine whether these seemingly subtle early defects affect adult neural function, we investigated neural circuit physiology in newborn HD mice. During the first postnatal week, HD mice have less cortical layer 2/3 excitatory synaptic activity than wild-type mice, express fewer glutamatergic receptors, and show sensorimotor deficits. The circuit self-normalizes in the second postnatal week but the mice nonetheless develop HD. Pharmacologically enhancing glutamatergic transmission during the neonatal period, however, rescues these deficits and preserves sensorimotor function, cognition, and spine and synapse density as well as brain region volume in HD adult mice.


Asunto(s)
Encéfalo , Proteína Huntingtina , Enfermedad de Huntington , Red Nerviosa , Neurogénesis , Sinapsis , Animales , Encéfalo/anomalías , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/embriología , Enfermedad de Huntington/genética , Ratones , Ratones Transgénicos , Red Nerviosa/anomalías , Neurogénesis/genética , Sinapsis/fisiología
20.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35943803

RESUMEN

Huntington's disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site. In this study, we used a multidisciplinary approach to characterize the therapeutic potential of targeting HTT exon 12. We show that HTTΔ12 was resistant to caspase-6 cleavage in both cell-free and tissue lysate assays. However, HTTΔ12 retained overall biochemical and structural properties similar to those of wt-HTT. We generated mice in which HTT exon 12 was truncated and found that the canonical exon 12 was dispensable for the main physiological functions of HTT, including embryonic development and intracellular trafficking. Finally, we pharmacologically induced HTTΔ12 using the antisense oligonucleotide (ASO) QRX-704. QRX-704 showed predictable pharmacology and efficient biodistribution. In addition, it was stable for several months and inhibited pathogenic proteolysis. Furthermore, QRX-704 treatments resulted in a reduction of HTT aggregation and an increase in dendritic spine count. Thus, ASO-induced HTT exon 12 splice switching from HTT may provide an alternative therapeutic strategy for HD.


Asunto(s)
Enfermedad de Huntington , Oligonucleótidos Antisentido , Animales , Caspasa 6 , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Isoformas de Proteínas/genética , Proteolisis , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA