Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 147(3): 970-979, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882537

RESUMEN

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two incurable neurodegenerative diseases that exist on a clinical, genetic and pathological spectrum. The VCP gene is highly relevant, being directly implicated in both FTD and ALS. Here, we investigate the effects of VCP mutations on the cellular homoeostasis of human induced pluripotent stem cell-derived cortical neurons, focusing on endolysosomal biology and tau pathology. We found that VCP mutations cause abnormal accumulation of enlarged endolysosomes accompanied by impaired interaction between two nuclear RNA binding proteins: fused in sarcoma (FUS) and splicing factor, proline- and glutamine-rich (SFPQ) in human cortical neurons. The spatial dissociation of intranuclear FUS and SFPQ correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we show that inducing 4R tau expression using antisense oligonucleotide technology is sufficient to drive neurodegeneration in control human neurons, which phenocopies VCP-mutant neurons. In summary, our findings demonstrate that tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress and apoptosis are driven by a pathogenic increase in 4R tau.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Proteína que Contiene Valosina , Humanos , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Lisosomas , Proteína que Contiene Valosina/genética
2.
Brain ; 147(7): 2325-2333, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527856

RESUMEN

APP gene dosage is strongly associated with Alzheimer's disease (AD) pathogenesis. Genomic duplication of the APP locus leads to autosomal dominant early-onset AD. Individuals with Down syndrome (trisomy of chromosome 21) harbour three copies of the APP gene and invariably develop progressive AD with highly characteristic neuropathological features. Restoring expression of APP to the equivalent of that of two gene copies, or lower, is a rational therapeutic strategy, as it would restore physiological levels of neuronal APP protein without the potentially deleterious consequences of inadvertently inducing loss of APP function. Here we find that antisense oligonucleotides (ASOs) targeting APP are an effective approach to reduce APP protein levels and rescue endolysosome and autophagy dysfunction in APP duplication and Trisomy 21 human induced pluripotent stem cell (hiPSC)-derived cortical neurons. Importantly, using ultrasensitive single-aggregate imaging techniques, we show that APP targeting ASOs significantly reduce both intracellular and extracellular amyloid-ß-containing aggregates. Our results highlight the potential of APP ASOs as a therapeutic approach for forms of AD caused by duplication of the APP gene, including monogenic AD and AD related to Down syndrome.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Síndrome de Down , Células Madre Pluripotentes Inducidas , Lisosomas , Oligonucleótidos Antisentido , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Oligonucleótidos Antisentido/farmacología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Células Cultivadas
3.
Traffic ; 17(11): 1155-1167, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27484852

RESUMEN

Neurons rely heavily on axonal transport to deliver materials from the sites of synthesis to the axon terminals over distances that can be many centimetres long. KIF1A is the neuron-specific kinesin with the fastest reported anterograde motor activity. Previous studies have shown that KIF1A transports a subset of synaptic proteins, neurofilaments and dense-core vesicles. Using two-colour live imaging, we showed that beta-secretase 1 (BACE1)-mCherry moves together with KIF1A-GFP in both the anterograde and retrograde directions in superior cervical ganglions (SCG) neurons. We confirmed that KIF1A is functionally required for BACE1 transport by using KIF1A siRNA and a KIF1A mutant construct (KIF1A-T312M) to impair its motor activity. We further identified several cargoes that have little or no co-migration with KIF1A-GFP and also move independently from BACE1-mCherry. Together, these findings support a primary role for KIF1A in the anterograde transport of BACE1 and suggest that axonally transported cargoes are sorted into different classes of carrier vesicles in the cell body and are transported by cargo-specific motor proteins through the axon.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Transporte Axonal/fisiología , Cinesinas/fisiología , Neuronas Motoras/fisiología , Transporte de Proteínas/fisiología , Ganglio Cervical Superior/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Cinesinas/genética , Proteínas Luminiscentes/genética , Ratones Endogámicos C57BL , Microscopía Fluorescente , Neuronas Motoras/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Transducción de Señal , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/metabolismo , Proteína Fluorescente Roja
4.
Autophagy ; 20(5): 1201-1202, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174587

RESUMEN

Dysfunction of the neuronal endolysosome and macroautophagy/autophagy pathway is emerging as an important pathogenic mechanism in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The VCP (valosin-containing protein) gene is of significant relevance, directly implicated in both FTD and ALS. In our recent study, we used patient-derived stem cells to study the effects of VCP mutations on the endolysosome and autophagy system in human cortical excitatory neurons. We found that VCP mutations cause an abnormal accumulation of enlarged endosomes and lysosomes, accompanied by reduced autophagy flux. VCP mutations also lead to the spatial dissociation of intra-nuclear RNA-binding proteins, FUS and SFPQ, which correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we found that an increase in the 4R-tau isoform is sufficient to drive toxic changes in healthy human cortical excitatory neurons, including tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress, and apoptosis. Together, our data suggest that endolysosomal and autophagy dysfunction could represent a convergent pathogenic "design principle" shared by both FTD and ALS.


Asunto(s)
Autofagia , Demencia Frontotemporal , Lisosomas , Proteínas tau , Humanos , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Autofagia/fisiología , Proteínas tau/metabolismo , Lisosomas/metabolismo , Endosomas/metabolismo , Neuronas/metabolismo , Mutación/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética
6.
Autophagy ; 17(11): 3882-3883, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34429033

RESUMEN

Abnormalities of the neuronal endolysosome and macroautophagy/autophagy system are an early and prominent feature of Alzheimer disease (AD). SORL1 is notable as a gene in which mutations are causal for a rare, autosomal dominant form of AD, and also variants that increase the risk of developing the common form of late-onset AD. In our recent study, we used patient-derived stem cells and CRISPR engineering to study the effects of SORL1 mutations on the endolysosome and autophagy system in human forebrain neurons. SORL1 mutations causal for monogenic AD are typically truncating mutations, and we found, using stem cells generated from an individual with dementia due to a heterozygous SORL1 truncation mutation, that this class of mutation results in SORL1 haploinsufficiency. Reducing SORL1 protein by half results in disrupted endosomal trafficking in patient-derived neurons, which we confirmed by studying the endolysosomal system in isogenic CRISPR-engineered SORL1 heterozygous null neurons. We also found that SORL1 homozygous null neurons develop more severe phenotypes, with endosome abnormalities, lysosome dysfunction and defects in the degradative phase of autophagy. Endolysosome and autophagy defects in SORL1 mutant neurons are dependent on APP, a key AD gene, as they are rescued by extracellular antisense oligonucleotides that reduce APP protein.


Asunto(s)
Enfermedad de Alzheimer/patología , Autofagia , Lisosomas/patología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Neuronas/patología
7.
Cell Rep ; 35(11): 109259, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133918

RESUMEN

Dysfunction of the endolysosomal-autophagy network is emerging as an important pathogenic process in Alzheimer's disease. Mutations in the sorting receptor-encoding gene SORL1 cause autosomal-dominant Alzheimer's disease, and SORL1 variants increase risk for late-onset AD. To understand the contribution of SORL1 mutations to AD pathogenesis, we analyze the effects of a SORL1 truncating mutation on SORL1 protein levels and endolysosome function in human neurons. We find that truncating mutation results in SORL1 haploinsufficiency and enlarged endosomes in human neurons. Analysis of isogenic SORL1 wild-type, heterozygous, and homozygous null neurons demonstrates that, whereas SORL1 haploinsufficiency results in endosome dysfunction, complete loss of SORL1 leads to additional defects in lysosome function and autophagy. Neuronal endolysosomal dysfunction caused by loss of SORL1 is relieved by extracellular antisense oligonucleotide-mediated reduction of APP protein, demonstrating that PSEN1, APP, and SORL1 act in a common pathway regulating the endolysosome system, which becomes dysfunctional in AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Endosomas/metabolismo , Proteínas Relacionadas con Receptor de LDL/deficiencia , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Neuronas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Demencia/genética , Demencia/patología , Técnicas de Inactivación de Genes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Fenotipo , Unión Proteica
8.
Cell Rep ; 25(13): 3647-3660.e2, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590039

RESUMEN

Abnormalities of the endolysosomal and autophagy systems are found in Alzheimer's disease, but it is not clear whether defects in these systems are a cause or consequence of degenerative processes in the disease. In human neuronal models of monogenic Alzheimer's disease, APP and PSEN1 mutations disrupt lysosome function and autophagy, leading to impaired lysosomal proteolysis and defective autophagosome clearance. Processing of APP by γ-secretase is central to the pathogenic changes in the lysosome-autophagy system caused by PSEN1 and APP mutations: reducing production of C-terminal APP by inhibition of BACE1 rescued these phenotypes in both APP and PSEN1 mutant neurons, whereas inhibition of γ-secretase induced lysosomal and autophagic pathology in healthy neurons. Defects in lysosomes and autophagy due to PSEN1 mutations are rescued by CRISPR-knockout of APP. These data demonstrate a key role for proteolysis of the C-terminal of APP by γ-secretase in neuronal dysfunction in monogenic Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagosomas/metabolismo , Lisosomas/metabolismo , Procesamiento Proteico-Postraduccional , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/genética , Autofagia , Axones/metabolismo , Sistemas CRISPR-Cas/genética , Corteza Cerebral/patología , Endosomas/metabolismo , Humanos , Mutación/genética , Presenilina-1/genética , Proteolisis
9.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA