Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409819

RESUMEN

Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) = 0.21) and isobaric hypoxic ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12). Median (interquartile range) values for non-invasive V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax , and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . During submaximal exercise at 50% of hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12 and the associated increase in PA pressures. KEY POINTS: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.

2.
Curr Cardiol Rep ; 26(6): 521-537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581563

RESUMEN

PURPOSE OF REVIEW: This review aims to summarize the fundamentals of RV-PA coupling, its non-invasive means of measurement, and contemporary understanding of RV-PA coupling in cardiac surgery, cardiac interventions, and congenital heart disease. RECENT FINDINGS: The need for more accessible clinical means of evaluation of RV-PA coupling has driven researchers to investigate surrogates using cardiac MRI, echocardiography, and right-sided pressure measurements in patients undergoing cardiac surgery/interventions, as well as patients with congenital heart disease. Recent research has aimed to validate these alternative means against the gold standard, as well as establish cut-off values predictive of morbidity and/or mortality. This emerging evidence lays the groundwork for identifying appropriate RV-PA coupling surrogates and integrating them into perioperative clinical practice.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Cardiopatías Congénitas , Ventrículos Cardíacos , Arteria Pulmonar , Función Ventricular Derecha , Humanos , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/diagnóstico por imagen , Procedimientos Quirúrgicos Cardíacos/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Función Ventricular Derecha/fisiología , Ecocardiografía/métodos , Imagen por Resonancia Magnética
3.
Am J Physiol Heart Circ Physiol ; 324(6): H804-H820, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961489

RESUMEN

Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Animales , Bovinos , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Mecanotransducción Celular , Proteómica , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/metabolismo , Ventrículos Cardíacos , Modelos Animales de Enfermedad , Hipoxia , Remodelación Ventricular , Función Ventricular Derecha , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/complicaciones
4.
J Biomech Eng ; 145(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542708

RESUMEN

Right Ventricular (RV) dysfunction is routinely assessed with echocardiographic-derived global longitudinal strain (GLS). GLS is measured from a two-dimensional echo image and is increasingly accepted as a means for assessing RV function. However, any two-dimensional (2D) analysis cannot visualize the asymmetrical deformation of the RV nor visualize strain over the entire RV surface. We believe three-dimensional surface (3DS) strain, obtained from 3D echo will better evaluate myocardial mechanics. Components of 3DS strain (longitudinal, LS; circumferential, CS; longitudinal-circumferential shear, ɣCL; principal strains PSMax and PSMin; max shear, ɣMax; and principal angle θMax) were computed from RV surface meshes obtained with 3D echo from 50 children with associated pulmonary arterial hypertension (PAH), 43 children with idiopathic PAH, and 50 healthy children by computing strains from a discretized displacement field. All 3DS freewall (FW) normal strain (LS, CS, PSMax, and PSMin) showed significant decline at end-systole in PH groups (p < 0.0001 for all), as did FW-ɣMax (p = 0.0012). FW-θMax also changed in disease (p < 0.0001). Limits of agreement analysis suggest that 3DS LS, PSMax, and PSMin are related to GLS. 3DS strains showed significant heterogeneity over the 3D surface of the RV. Components of 3DS strain agree with existing clinical strain measures, well classify normal -versus- PAH subjects, and suggest that strains change direction on the myocardial surface due to disease. This last finding is similar to that of myocardial fiber realignment in disease, but further work is needed to establish true associations.


Asunto(s)
Ecocardiografía Tridimensional , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Humanos , Niño , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/complicaciones , Ecocardiografía Tridimensional/métodos , Ecocardiografía/métodos , Miocardio , Disfunción Ventricular Derecha/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen
5.
Pediatr Cardiol ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37773462

RESUMEN

It is well appreciated that the Fontan circulation perturbs central venous hemodynamics, with elevated pressure being the clearest change associated with Fontan comorbidities, such as Fontan-associated liver disease (FALD) and protein-losing enteropathy (PLE). Our group has better quantity of these venous perturbations through single- and multi-location analyses of flow waveforms obtained from magnetic resonance imaging of Fontan patients. Here, we determine if such analyses, which yield principal components (PC) that describe flow features, are associated with Fontan survival. Patients with a Fontan circulation (N = 140) that underwent free-breathing and mechanically ventilated cardiac MRI were included in this study. Standard volumetric and functional hemodynamics, as well as flow analysis principal components, were subjected to univariate and bivariate Cox regression analyses to determine composite clinical outcome, including plastic bronchitis, PLE, and referral and receipt of transplant. Unsurprisingly, ventricular function measures of ejection fraction (EF; HR = 0.88, p < 0.0001), indexed end-systolic volume (ESVi; HR 1.02, p < 0.0001), and indexed end-diastolic volume (EDVi; HR = 1.02, p = 0.0007) were found as specific predictors of clinical events, with specificities uniformly > 0.75. Additionally a feature of IVC flow (PC2) indicating increased flow in systole was found as a highly sensitive predictor (HR = 0.851, p = 0.027, sensitivity 0.93). In bivariate prediction, combinations of ventricular function (EF, ESVi, EDVi) with this IVC flow feature yielded best overall prediction of composite outcome. This suggests that central venous waveform analysis relays additional information about Fontan patient survival and that coupling sensitive and specific measures in bivariate analysis is a useful approach for obtaining superior prediction of survival.

6.
J Biomech Eng ; 144(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34251418

RESUMEN

Pulmonary hypertension (PH) is a progressive disease that is characterized by a gradual increase in both resistive and reactive pulmonary arterial (PA) impedance. Previous studies in a rodent model of PH have shown that reducing the hemodynamic load in the left lung (by banding the left PA) reverses this remodeling phenomenon. However, banding a single side of the pulmonary circulation is not a viable clinical option, so-using in silico modeling-we evaluated if the banding effect can be recreated by replacing the proximal vasculature with a compliant synthetic PA. We developed a computational model of the pulmonary circulation by combining a one-dimensional model of the proximal vasculature with a zero-dimensional line transmission model to the 12th generation. Using this model, we performed four simulations: (1) Control; (2) PH; (3) PH with a stenosis in the left PA; and (4) PH with proximal vessel compliance returned to Control levels. Simulations revealed that vascular changes associated with PH result in an increase in pulse pressure (PP), maximum pressure (Pmax), maximum wall shear stress (WSS), and maximum circumferential stress (σθθ) relative to controls, in the distal circulation. Banding the left PA reduced these measurements of hemodynamic stress in the left lung, but increases them in the right lung. Furthermore, left PA banding increased reactive PA impedance. However, returning the proximal PA compliance to Control levels simultaneously decreased all measures of hemodynamic stress in both lungs, and returned reactive PA impedance to normal levels. In conclusion, if future in vivo studies support the idea of hemodynamic unloading as an effective therapy for PH, this can be surgically achieved by replacing the proximal PA with a compliant prosthesis, and it will have the added benefit of reducing reactive right ventricular afterload.


Asunto(s)
Hipertensión Pulmonar , Hemodinámica , Humanos , Arteria Pulmonar , Circulación Pulmonar , Resistencia Vascular
7.
J Cardiovasc Magn Reson ; 23(1): 66, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34078382

RESUMEN

BACKGROUND: The role of interventricular mechanics in pediatric pulmonary arterial hypertension (PAH) and its relation to right ventricular (RV) dysfunction has been largely overlooked. Here, we characterize the impact of maintained pressure overload in the RV-pulmonary artery (PA) axis on myocardial strain and left ventricular (LV) mechanics in pediatric PAH patients in comparison to a preclinical PA-banding (PAB) mouse model. We hypothesize that the PAB mouse model mimics important aspects of interventricular mechanics of pediatric PAH and may be beneficial as a surrogate model for some longitudinal and interventional studies not possible in children. METHODS: Balanced steady-state free precession (bSSFP) cardiovascular magnetic resonance (CMR) images of 18 PAH and 17 healthy (control) pediatric subjects were retrospectively analyzed using CMR feature-tracking (FT) software to compute measurements of myocardial strain. Furthermore, myocardial tagged-CMR images were also analyzed for each subject using harmonic phase flow analysis to derive LV torsion rate. Within 48 h of CMR, PAH patients underwent right heart catheterization (RHC) for measurement of PA/RV pressures, and to compute RV end-systolic elastance (RV_Ees, a measure of load-independent contractility). Surgical PAB was performed on mice to induce RV pressure overload and myocardial remodeling. bSSFP-CMR, tagged CMR, and intra-cardiac catheterization were performed on 12 PAB and 9 control mice (Sham) 7 weeks after surgery with identical post-processing as in the aforementioned patient studies. RV_Ees was assessed via the single beat method. RESULTS: LV torsion rate was significantly reduced under hypertensive conditions in both PAB mice (p = 0.004) and pediatric PAH patients (p < 0.001). This decrease in LV torsion rate correlated significantly with a decrease in RV_Ees in PAB (r = 0.91, p = 0.05) and PAH subjects (r = 0.51, p = 0.04). In order to compare combined metrics of LV torsion rate and strain parameters principal component analysis (PCA) was used. PCA revealed grouping of PAH patients with PAB mice and control subjects with Sham mice. Similar to LV torsion rate, LV global peak circumferential, radial, and longitudinal strain were significantly (p < 0.05) reduced under hypertensive conditions in both PAB mice and children with PAH. CONCLUSIONS: The PAB mouse model resembles PAH-associated myocardial mechanics and may provide a potential model to study mechanisms of RV/LV interdependency.


Asunto(s)
Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Animales , Niño , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Ratones , Valor Predictivo de las Pruebas , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía , Estudios Retrospectivos , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/etiología , Función Ventricular Derecha
8.
J Physiol ; 598(13): 2575-2587, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347547

RESUMEN

KEY POINTS: Despite growing interest in right ventricular form and function in diseased states, there is a paucity of data regarding characteristics of right ventricular function - namely contractile and lusitropic reserve, as well as ventricular-arterial coupling, in the healthy heart during rest, as well as submaximal and peak exercise. Pressure-volume analysis of the right ventricle, during invasive cardiopulmonary exercise testing, demonstrates that that the right heart has enormous contractile reserve, with a three- or fourfold increase in all metrics of contractility, as well as myocardial energy production and utilization. The healthy right ventricle also demonstrates marked augmentation in lusitropy, indicating that diastolic filling of the right heart is not passive. Rather, the right ventricle actively contributes to venous return during exercise, along with the muscle pump. Ventricular-arterial coupling is preserved during submaximal and peak exercise in the healthy heart. ABSTRACT: Knowledge of right ventricular (RV) function has lagged behind that of the left ventricle and historically, the RV has even been referred to as a 'passive conduit' of lesser importance than its left-sided counterpart. Pressure-volume (PV) analysis is the gold standard metric of assessing ventricular performance. We recruited nine healthy sedentary individuals free of any cardiopulmonary disease (42 ± 12 years, 78 ± 11 kg), who completed invasive cardiopulmonary exercise testing during upright ergometry, while using conductance catheters inserted into the RV to generate real-time PV loops. Data were obtained at rest, two submaximal levels of exercise below ventilatory threshold, to simulate real-world scenarios/activities of daily living, and maximal effort. Breath-by-breath oxygen uptake was determined by indirect calorimetry. During submaximal and peak exercise, there were significant increases in all metrics of systolic function by three- to fourfold, including cardiac output, preload recruitable stroke work, and maximum rate of pressure change in the ventricle (dP/dtmax ), as well as energy utilization as determined by stroke work and pressure-volume area. Similarly, the RV demonstrated a significant, threefold increase in lusitropic reserve throughout exercise. Ventricular-arterial coupling, defined by the quotient of end-systolic elastance and effective arterial elastance, was preserved throughout all stages of exercise. Maximal pressures increased significantly during exercise, while end-diastolic volumes were essentially unchanged. Overall, these findings demonstrate that the healthy RV is not merely a passive conduit, but actively participates in cardiopulmonary performance during exercise by accessing an enormous amount of contractile and lusitropic reserve, ensuring that VA coupling is preserved throughout all stages of exercise.


Asunto(s)
Ventrículos Cardíacos , Disfunción Ventricular Derecha , Actividades Cotidianas , Corazón , Humanos , Volumen Sistólico , Función Ventricular Derecha
9.
Am J Physiol Heart Circ Physiol ; 318(2): H366-H377, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31886720

RESUMEN

Right ventricle (RV) pressure loading can lead to RV fibrosis and dysfunction. We previously found increased RV, septal hinge-point and left ventricle (LV) fibrosis in experimental RV pressure loading. However, the relation of RV wall stress to biventricular fibrosis and dysfunction is incompletely defined. Rabbits underwent progressive pulmonary artery banding (PAB) over 3 wk with hemodynamics, echocardiography, and myocardial samples obtained at a terminal experiment at 6 wk. An additional group received PAB and treatment with an endothelin receptor antagonist. The endocardial and epicardial borders of short-axis echo images were traced and analyzed with invasive pressures to yield regional end-diastolic (ED) and end-systolic (ES) wall stress. To increase clinical translation, computer model-derived wall stress was compared with Laplace wall stress. The relation of wall stress with fibrosis (picrosirius red staining) and ventricular function was analyzed. ED wall stress in all regions and RV and LV free-wall ES wall stress were increased in PAB rabbits versus sham animals. Laplace wall stress correlated well with computational models. In PAB, fibrosis was highest in the RV free wall, then septal hinge regions, and lowest in the septum and LV free wall. Fibrosis was moderately related to ED (r = 0.47, P = 0.0011), but not ES wall stress. RV ED wall stress was strongly related to echo indexes of function (strain rate: r = 0.71, P = 0.048; E', r = -0.75, P = 0.0077; tricuspid annular plane systolic excursion: r = 0.85, P = 0.0038) and RV fractional area change (r = 0.77, P = 0.027). ED, more than ES, wall stress is related moderately to fibrosis and strongly to function in experimental RV pressure loading, especially at the septal hinge-point regions, where fibrosis is prominent. This suggests that wall stress partially links RV pressure loading, fibrosis, and dysfunction and may be useful to follow clinically.NEW & NOTEWORTHY Biventricular fibrosis and dysfunction impact outcomes in RV pressure loading, but their relation to wall stress is poorly defined. Using a pulmonary artery band rabbit model, we entered echocardiography and catheter data into a computer model to yield regional end-diastolic (EDWS) and end-systolic (ESWS) wall stress. EDWS, more than ESWS, correlated with fibrosis and dysfunction, especially at the fibrosis-intense septal hinge-point regions. Thus, wall stress may be clinically useful in linking RV pressure loading to regional fibrosis and dysfunction.


Asunto(s)
Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha , Presión Ventricular , Algoritmos , Animales , Simulación por Computador , Ecocardiografía , Fibrosis , Hemodinámica , Masculino , Miocardio/patología , Presión , Conejos , Volumen Sistólico , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/complicaciones , Remodelación Ventricular
10.
Am J Physiol Heart Circ Physiol ; 318(5): H1032-H1040, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167782

RESUMEN

The Fontan circulation is characterized as a nonpulsatile flow propagation without a pressure-generating ventricle. However, flow through the Fontan circulation still exhibits oscillatory waves as a result of pressure changes generated by the systemic single ventricle. Identification of discrete flow patterns through the Fontan circuit may be important to understand single ventricle performance. Ninety-seven patients with Fontan circulation underwent phase-contrast MRI of the right pulmonary artery, yielding subject-specific flow waveforms. Principal component (PC) analysis was performed on preprocessed flow waveforms. Principal components were then correlated with standard MRI indices of function, volume, and aortopulmonary collateral flow. The first principal component (PC) described systolic versus diastolic-dominant flow through the Fontan circulation, accounting for 31.3% of the variance in all waveforms. The first PC correlated with end-diastolic volume (R = 0.34, P = 0.001), and end-systolic volume (R = 0.30, P = 0.003), cardiac index (R = 0.51, P < 0.001), and the amount of aortopulmonary collateral flow (R = 0.25, P = 0.027)-lower ventricular volumes and a smaller volume of collateral flow-were associated with diastolic-dominant cavopulmonary flow. The second PC accounted for 19.5% of variance and described late diastolic acceleration versus deceleration and correlated with ejection fraction-diastolic deceleration was associated with higher ejection fraction. Principal components describing the diastolic flow variations in pulmonary arteries are related to the single ventricle function and volumes. Particularly, diastolic-dominant flow without late acceleration appears to be related to preserved ventricular volume and function, respectively.NEW & NOTEWORTHY The exact physiological significance of flow oscillations of phasic and temporal flow variations in Fontan circulation is unknown. With the use of principal component analysis, we discovered that flow variations in the right pulmonary artery of Fontan patients are related to the single ventricle function and volumes. Particularly, diastolic-dominant flow without late acceleration appears to be related to more ideal ventricular volume and systolic function, respectively.


Asunto(s)
Procedimiento de Fontan/efectos adversos , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Modelos Cardiovasculares , Complicaciones Posoperatorias/fisiopatología , Arteria Pulmonar/fisiopatología , Adolescente , Niño , Circulación Coronaria , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Contracción Miocárdica , Modelación Específica para el Paciente , Complicaciones Posoperatorias/diagnóstico por imagen , Análisis de Componente Principal , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía
11.
Am J Physiol Heart Circ Physiol ; 316(5): H1091-H1104, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822118

RESUMEN

Despite different developmental and pathological processes affecting lung vascular remodeling in both patient populations, differences in 4D MRI findings between children and adults with PAH have not been studied. The purpose of this study was to compare flow hemodynamic state, including flow-mediated shear forces, between pediatric and adult patients with PAH matched by severity of pulmonary vascular resistance index (PVRi). Adults (n = 10) and children (n = 10) with PAH matched by pulmonary vascular resistance index (PVRi) and healthy adult (n = 10) and pediatric (n = 10) subjects underwent comprehensive 4D-flow MRI to assess peak systolic wall shear stress (WSSmax) measured in the main (MPA), right (RPA), and left pulmonary arteries (LPA), viscous energy loss (EL) along the MPA-RPA and MPA-LPA tract, and qualitative analysis of secondary flow hemodynamics. WSSmax was decreased in all pulmonary vessels in children with PAH when compared with the same age group (all P < 0.05). Similarly, WSSmax was decreased in all pulmonary vessels in adult PAH patients when compared with healthy adult subjects (all P < 0.01). Average EL was increased in adult patients with PAH when compared with the same age group along both MPA-RPA (P = 0.020) and MPA-LPA (P = 0.025) tracts. There were no differences in EL indices between adults and pediatric patients. Children and adult patients with PAH have decreased shear hemodynamic forces. However, pathological flow hemodynamic formations appear to be more consistent in adult patients, whereas flow hemodynamic abnormalities appear to be more variable in children with PAH for comparable severity of PVRi. NEW & NOTEWORTHY Both children and adult patients with PAH have decreased shear hemodynamic forces inside the pulmonary arteries associated with the degree of vessel dilation and stiffness. These differences also exist between healthy normotensive children and adults. However, pathological flow hemodynamic formations appear to more uniform in adult patients, whereas in children with PAH flow, hemodynamic abnormalities appear to be more variable. Pathological flow formations appear not to have a major effect on viscous energy loss associated with the flow conduction through proximal pulmonary arteries.


Asunto(s)
Presión Arterial , Imagen por Resonancia Cinemagnética , Imagen de Perfusión/métodos , Hipertensión Arterial Pulmonar/diagnóstico por imagen , Arteria Pulmonar/diagnóstico por imagen , Circulación Pulmonar , Adolescente , Factores de Edad , Anciano , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Índice de Severidad de la Enfermedad , Estrés Mecánico , Resistencia Vascular
13.
Am J Physiol Heart Circ Physiol ; 315(4): H968-H977, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30004811

RESUMEN

The purpose of the present study was to characterize pulmonary vascular stiffness using wave intensity analysis (WIA) in children with pulmonary arterial hypertension (PAH), compare the WIA indexes with catheterization- and MRI-derived hemodynamics, and assess the prognostic ability of WIA-derived biomarkers to predict the functional worsening. WIA was performed in children with PAH ( n = 40) and healthy control subjects ( n = 15) from phase-contrast MRI-derived flow and area waveforms in the main pulmonary artery (MPA). From comprehensive WIA spectra, we collected and compared with healthy control subjects forward compression waves (FCW), backward compression waves (BCW), forward decompression waves (FDW), and wave propagation speed ( c-MPA). There was no difference in the magnitude of FCW between PAH and control groups (88 vs. 108 mm5·s-1·ml-1, P = 0.239). The magnitude of BCW was increased in patients with PAH (32 vs. 5 mm5·s-1·ml-1, P < 0.001). There was no difference in magnitude of indexed FDW (32 vs. 28 mm5·s-1·ml-1, P = 0.856). c-MPA was increased in patients with PAH (3.2 vs. 1.6 m/s, P < 0.001). BCW and FCW correlated with mean pulmonary arterial pressure, right ventricular volumes, and ejection fraction. Elevated indexed BCW [heart rate (HR) = 2.91, confidence interval (CI): 1.18-7.55, P = 0.019], reduced indexed FDW (HR = 0.34, CI: 0.11-0.90, P = 0.030), and increased c-MPA (HR = 3.67, CI: 1.47-10.20, P = 0.004) were strongly associated with functional worsening of disease severity. Our results suggest that noninvasively derived biomarkers of pulmonary vascular resistance and stiffness may be helpful for determining prognosis and monitoring disease progression in children with PAH. NEW & NOTEWORTHY Wave intensity analysis (WIA) studies are lacking in children with pulmonary arterial hypertension (PAH) partially because WIA, which is necessary to assess vascular stiffness, requires an invasive pressure-derived waveform along with simultaneous flow measurements. We analyzed vascular stiffness using WIA in children with PAH who underwent phase-contrast MRI and observed significant differences in WIA indexes between patients with PAH and control subjects. Furthermore, WIA indexes were predictive of functional worsening and were associated with standard catheterization measures.


Asunto(s)
Presión Arterial , Hipertensión Pulmonar/diagnóstico por imagen , Imagen por Resonancia Magnética , Arteria Pulmonar/diagnóstico por imagen , Análisis de la Onda del Pulso , Rigidez Vascular , Adolescente , Factores de Edad , Cateterismo Cardíaco , Niño , Progresión de la Enfermedad , Femenino , Humanos , Hipertensión Pulmonar/fisiopatología , Masculino , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Arteria Pulmonar/fisiopatología , Reproducibilidad de los Resultados , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Derecha
14.
J Vasc Surg ; 68(1): 246-253, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28986100

RESUMEN

OBJECTIVE: Central aortic stiffness and chronic obstructive pulmonary disease (COPD) are associated with increased incidence of devastating aortopathies. However, the exact mechanism leading to elevated aortic stiffness in patients with COPD is unknown. The purpose of this study was to quantify flow and shear hemodynamic indices, known markers of vascular remodeling, in the thoracic aorta of patients with mild to moderate COPD (n = 16) and to compare these results with an age-matched control group (n = 10). METHODS: Four-dimensional flow magnetic resonance imaging has been applied to measure hemodynamic wall shear stress (WSS) at four specific planes along the ascending aorta, aortic arch, and proximal descending aorta for all subjects. Peak systolic WSS and time-averaged WSS, which respectively reflect magnitude and temporal shear variability, were calculated at standardized planes. Aortic deformation was measured by means of relative area change (RAC) at the midlevel of the ascending and descending aorta. RESULTS: Compared with controls, patients with COPD had significantly reduced RAC in the mid ascending aorta (9% vs 18%; P < .0001) and descending aorta (15% vs 19%; P = .0206). Peak systolic WSS in COPD patients was significantly reduced in all considered planes, with the most dramatic difference occurring in the descending aorta (0.46 vs 0.86 N/m2; P < .0001). Peak systolic WSS and time-averaged WSS were both significantly correlated with aortic RAC at each evaluated plane. CONCLUSIONS: Reduced flow shear metrics assessed at specific aortic regions correlated with RAC, a marker of aortic stiffness. Reduced hemodynamic WSS may then contribute to central aortic stiffening and perpetuate the risk for development of severe aortopathy.


Asunto(s)
Aorta Torácica/fisiopatología , Enfermedades de la Aorta/etiología , Hemodinámica , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Rigidez Vascular , Anciano , Aorta Torácica/diagnóstico por imagen , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/fisiopatología , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Angiografía por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Modelación Específica para el Paciente , Imagen de Perfusión/métodos , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Flujo Sanguíneo Regional , Factores de Riesgo , Estrés Mecánico
15.
J Magn Reson Imaging ; 48(5): 1228-1236, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29707843

RESUMEN

BACKGROUND: Patients with diagnosed Kawasaki disease (KD) are known to develop extracardiac vascular lesions and are prone to accelerated stiffening of medium-size arteries. PURPOSE: To noninvasively evaluate great vessel (central aorta and main pulmonary artery (MPA)) stiffness using phase-contrast MRI (PC-MRI). STUDY TYPE: Retrospective review. SUBJECTS: Thirty-three patients with previously diagnosed KD and 15 control subjects underwent PC-MRI evaluation. FIELD STRENGTH/SEQUENCE: A free-breathing PC-MRI sequence was applied with Cartesian encoding and retrospective sorting using a 1.5 or 3.0T system. ASSESSMENT: We evaluated regionally specific vessel stiffness using pulse-wave velocity (PWV) and relative area change (RAC) at the ascending aorta, descending aorta, and MPA. STATISTICAL TESTS: Hemodynamics among patients with KD and controls were compared using Student's t-test, Wilcoxon Rank-sum, and χ2 . Additional group-specific comparisons were performed using Kruskal-Wallis or one-way analysis of variance (ANOVA). RESULTS: Patients with KD showed elevated PWV in both ascending (5.0 ± 1.2 vs. 2.4 ± 0.5, P < 0.001) and descending aorta (4.4 ± 2.1 vs. 2.8 ± 0.8, P < 0.001). RAC was correspondingly reduced in both segments (both P < 0.01). PWV measured in MPA was increased in KD patients (2.2 ± 0.5 vs. 1.5 ± 0.6, P = 0.045) while the RAC was reduced (34 ± 6 vs. 47 ± 3, P = 0.045). There were no associations between considered vessel stiffness indices and respective ventricular size and function, functional indices, and no correlations were observed with KD severity markers. DATA CONCLUSION: Patients with KD have elevated great vessel stiffness measured at the chronic stage of the disease. Accelerated stiffness process does not appear to affect biventricular function in youth Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1228-1236.


Asunto(s)
Arterias/diagnóstico por imagen , Imagen por Resonancia Magnética , Síndrome Mucocutáneo Linfonodular/diagnóstico por imagen , Rigidez Vascular , Aorta/diagnóstico por imagen , Arterias/fisiopatología , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Niño , Preescolar , Ecocardiografía , Femenino , Hemodinámica , Humanos , Lactante , Masculino , Análisis de la Onda del Pulso , Estudios Retrospectivos , Riesgo
16.
Am J Respir Crit Care Med ; 195(12): 1661-1670, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28430547

RESUMEN

The Division of Lung Diseases of the NHLBI and the Cardiovascular Medical Education and Research Fund held a workshop to discuss how to leverage the anticipated scientific output from the recently launched "Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics" (PVDOMICS) program to develop newer approaches to pulmonary vascular disease. PVDOMICS is a collaborative, protocol-driven network to analyze all patient populations with pulmonary hypertension to define novel pulmonary vascular disease (PVD) phenotypes. Stakeholders, including basic, translational, and clinical investigators; clinicians; patient advocacy organizations; regulatory agencies; and pharmaceutical industry experts, joined to discuss the application of precision medicine to PVD clinical trials. Recommendations were generated for discussion of research priorities in line with NHLBI Strategic Vision Goals that include: (1) A national effort, involving all the stakeholders, should seek to coordinate biosamples and biodata from all funded programs to a web-based repository so that information can be shared and correlated with other research projects. Example programs sponsored by NHLBI include PVDOMICS, Pulmonary Hypertension Breakthrough Initiative, the National Biological Sample and Data Repository for PAH, and the National Precision Medicine Initiative. (2) A task force to develop a master clinical trials protocol for PVD to apply precision medicine principles to future clinical trials. Specific features include: (a) adoption of smaller clinical trials that incorporate biomarker-guided enrichment strategies, using adaptive and innovative statistical designs; and (b) development of newer endpoints that reflect well-defined and clinically meaningful changes. (3) Development of updated and systematic variables in imaging, hemodynamic, cellular, genomic, and metabolic tests that will help precisely identify individual and shared features of PVD and serve as the basis of novel phenotypes for therapeutic interventions.


Asunto(s)
Hipertensión Pulmonar/terapia , Medicina de Precisión/métodos , Educación , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
17.
Pediatr Radiol ; 48(12): 1745-1754, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29955904

RESUMEN

BACKGROUND: Neuroendocrine cell hyperplasia of infancy (NEHI) is a rare lung disease associated with significant air trapping. Although chest CT is crucial in establishing a diagnosis, CT and biopsy findings do not reveal airway abnormalities to explain the air trapping. OBJECTIVE: We compared lung and airway morphology obtained from chest CT scans in children with NEHI and control children. In the children with NEHI, we explored relationships between lung and airway shape and lung function. MATERIALS AND METHODS: We performed a retrospective review of children with NEHI who underwent clinical chest CT. We identified control children of similar size and age. We created lung masks and airway skeletons using semi-automated software and compared them using statistical shape modeling methods. Then we calculated a logistic regression model using lung and airway shape to differentiate NEHI from controls, and we compared shape model parameters to lung function measurements. RESULTS: Airway and lung shapes were statistically different between children with NEHI and controls. We noted a broad lung apex in the children with NEHI and a significantly increased apical anterior-posterior lung diameter. A logistic regression model including lung shape was 90% accurate in differentiating children with NEHI from controls. Correlation coefficients were significant between lung function values and lung and airway shape. CONCLUSION: Lung and airway shapes were different between children with NEHI and control children in this cohort. Children with NEHI had an increased anteroposterior diameter of their lungs that might be useful in the diagnostic criteria.


Asunto(s)
Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Células Neuroendocrinas/patología , Femenino , Humanos , Hiperplasia/diagnóstico por imagen , Lactante , Masculino , Interpretación de Imagen Radiográfica Asistida por Computador , Enfermedades Raras , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
18.
Pediatr Cardiol ; 39(2): 268-274, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29043395

RESUMEN

We sought to compare pulmonary flow hemodynamic indices obtained by Fick and thermodilution catheterization techniques with phase-contrast MRI (PC-MRI) in children with diverse etiologies of pulmonary arterial hypertension (PAH). Calculation of pulmonary flow ([Formula: see text]) using the Fick principle in most catheter laboratories relies on an estimate of oxygen consumption which may limit its reliability. Flow hemodynamic indices acquired from thirty patients with PAH who underwent successful same-day PC-MRI and catheterization were evaluated for absolute and percent bias. Comparison of [Formula: see text] between PC-MRI and Fick revealed poor agreement with an absolute bias of 0.96 ± 0.53 L/min/m2 and percent bias of 27.7 ± 19.6%. Same analysis between PC-MRI and thermodilution revealed better agreement as demonstrated by absolute bias 0.64 ± 0.47 L/min/m2 and percent bias 16.8 ± 12.3%. Retrospectively calculated [Formula: see text] from PC-MRI and LaFarge equations revealed poor agreement, with an absolute bias of 33.4 ± 21.6 mL/min/m2 and percent bias of 25.8 ± 12.6%. We found that Fick-derived flow hemodynamics dramatically differs from PC-MRI computed metrics in children with PAH. The non-invasive nature of PC-MRI and short acquisition time is ideal for pediatric flow evaluation and may offer a novel route of absolute flow and resistance assessment when combined with cardiac catheterization.


Asunto(s)
Cateterismo Cardíaco/métodos , Hipertensión Pulmonar/fisiopatología , Imagen por Resonancia Magnética/métodos , Consumo de Oxígeno/fisiología , Termodilución/métodos , Adolescente , Gasto Cardíaco , Niño , Preescolar , Femenino , Hemodinámica/fisiología , Humanos , Lactante , Masculino , Circulación Pulmonar/fisiología , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
19.
Am J Physiol Heart Circ Physiol ; 311(1): H168-76, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199117

RESUMEN

Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we showed that the in vivo formulation predicts more homogenous perfusion of microvascular networks at the arteriolar and capillary levels. Next, we showed that the more homogeneous blood flow under simulated in vivo conditions can be explained by changes in red blood cell interactions with the vessel wall. Finally, we demonstrated that the presence of a space-filling, semipermeable layer (such as the endothelial glycocalyx) at the vessel wall can account for the changes of red blood cell interactions with the vessel wall that promote homogenous microvascular perfusion. Collectively, our results indicate that the mechanical properties of the endothelial glycocalyx promote homogeneous microvascular perfusion. Preservation or restoration of normal glycocalyx properties may be a viable strategy for improving tissue perfusion in a variety of diseases.


Asunto(s)
Arteriolas/fisiología , Capilares/fisiología , Células Endoteliales/fisiología , Glicocálix/fisiología , Hemorreología , Microcirculación , Modelos Cardiovasculares , Arteriolas/anatomía & histología , Viscosidad Sanguínea , Capilares/anatomía & histología , Permeabilidad Capilar , Eritrocitos/fisiología , Humanos , Técnicas Analíticas Microfluídicas , Flujo Sanguíneo Regional
20.
Curr Hypertens Rep ; 18(1): 4, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26733189

RESUMEN

Stiffening of the pulmonary arterial bed with the subsequent increased load on the right ventricle is a paramount feature of pulmonary hypertension (PH). The pathophysiology of vascular stiffening is a complex and self-reinforcing function of extracellular matrix remodeling, driven by recruitment of circulating inflammatory cells and their interactions with resident vascular cells, and mechanotransduction of altered hemodynamic forces throughout the ventricular-vascular axis. New approaches to understanding the cell and molecular determinants of the pathophysiology combine novel biopolymer substrates, controlled flow conditions, and defined cell types to recapitulate the biomechanical environment in vitro. Simultaneously, advances are occurring to assess novel parameters of stiffness in vivo. In this comprehensive state-of-art review, we describe clinical hemodynamic markers, together with the newest translational echocardiographic and cardiac magnetic resonance imaging methods, to assess vascular stiffness and ventricular-vascular coupling. Finally, fluid-tissue interactions appear to offer a novel route of investigating the mechanotransduction processes and disease progression.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Arteria Pulmonar , Rigidez Vascular , Ecocardiografía , Hemodinámica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA