RESUMEN
Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por Herpesviridae/inmunología , Depleción Linfocítica , Piel/inmunología , Varicellovirus/aislamiento & purificación , Activación Viral/inmunología , Latencia del Virus/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/virología , Modelos Animales de Enfermedad , Femenino , Ganglios/citología , Ganglios/inmunología , Ganglios/virología , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Macaca mulatta , Masculino , Piel/citología , Piel/virologíaRESUMEN
Simian varicella virus (SVV), the primate counterpart of varicella-zoster virus, causes varicella (chickenpox), establishes latency in ganglia, and reactivates to produce zoster. We previously demonstrated that a recombinant SVV expressing enhanced green fluorescent protein (rSVV.eGFP) is slightly attenuated both in culture and in infected monkeys. Here, we generated two additional recombinant SVVs to visualize infected cells in vitro and in vivo One harbors eGFP fused to the N terminus of open reading frame 9 (ORF9) (rSVV.eGFP-2a-ORF9), and another harbors eGFP fused to the C terminus of ORF66 (rSVV.eGFP-ORF66). Both recombinant viruses efficiently expressed eGFP in cultured cells. Both recombinant SVV infections in culture were comparable to that of wild-type SVV (SVV.wt). Unlike SVV.wt, eGFP-tagged SVV did not replicate in rhesus cells in culture. Intratracheal (i.t.) or i.t. plus intravenous (i.v.) inoculation of rhesus macaques with these new eGFP-tagged viruses resulted in low viremia without varicella rash, although SVV DNA was abundant in bronchoalveolar lavage (BAL) fluid at 10 days postinoculation (dpi). SVV DNA was also found in trigeminal ganglia of one monkey inoculated with rSVV.eGFP-ORF66. Intriguingly, a humoral response to both SVV and eGFP was observed. In addition, monkeys inoculated with the eGFP-expressing viruses were protected from superinfection with SVV.wt, suggesting that the monkeys had mounted an efficient immune response. Together, our results show that eGFP expression could be responsible for their reduced pathogenesis.IMPORTANCE SVV infection in nonhuman primates has served as an extremely useful animal model to study varicella-zoster virus (VZV) pathogenesis. eGFP-tagged viruses are a great tool to investigate their pathogenesis. We constructed and tested two new recombinant SVVs with eGFP inserted into two different locations in the SVV genome. Both recombinant SVVs showed robust replication in culture but reduced viremia compared to that with SVV.wt during primary infection in rhesus macaques. Our results indicate that conclusions on eGFP-tagged viruses based on in vitro results should be handled with care, since eGFP expression could result in attenuation of the virus.
Asunto(s)
Regulación Viral de la Expresión Génica , Proteínas Fluorescentes Verdes , Infecciones por Herpesviridae , Enfermedades de los Monos , Sistemas de Lectura Abierta , Varicellovirus , Animales , Línea Celular , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/veterinaria , Macaca mulatta , Enfermedades de los Monos/genética , Enfermedades de los Monos/metabolismo , Enfermedades de los Monos/patología , Varicellovirus/genética , Varicellovirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Clostridium difficile-associated disease (CDAD) constitutes a large majority of nosocomial diarrhea cases in industrialized nations and is mediated by the effects of two secreted toxins, toxin A (TcdA) and toxin B (TcdB). Patients who develop strong antitoxin antibody responses can clear C. difficile infection and remain disease free. Key toxin-neutralizing epitopes have been found within the carboxy-terminal receptor binding domains (RBDs) of TcdA and TcdB, which has generated interest in developing the RBD as a viable vaccine target. While numerous platforms have been studied, very little data describes the potential of DNA vaccination against CDAD. Therefore, we created highly optimized plasmids encoding the RBDs from TcdA and TcdB in which any putative N-linked glycosylation sites were altered. Mice and nonhuman primates were immunized intramuscularly, followed by in vivo electroporation, and in these animal models, vaccination induced significant levels of both anti-RBD antibodies (blood and stool) and RBD-specific antibody-secreting cells. Further characterization revealed that sera from immunized mice and nonhuman primates could detect RBD protein from transfected cells, as well as neutralize purified toxins in an in vitro cytotoxicity assay. Mice that were immunized with plasmids or given nonhuman-primate sera were protected from a lethal challenge with purified TcdA and/or TcdB. Moreover, immunized mice were significantly protected when challenged with C. difficile spores from homologous (VPI 10463) and heterologous, epidemic (UK1) strains. These data demonstrate the robust immunogenicity and efficacy of a TcdA/B RBD-based DNA vaccine in preclinical models of acute toxin-associated and intragastric, spore-induced colonic disease.
Asunto(s)
Anticuerpos Antibacterianos/sangre , Antitoxinas/sangre , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Enterotoxinas/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Protección Cruzada , Electroforesis , Enterotoxinas/genética , Femenino , Inyecciones Intramusculares , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Pruebas de Neutralización , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Análisis de Supervivencia , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunologíaRESUMEN
Most successful vaccines elicit neutralizing antibodies and this property is a high priority when developing an HIV vaccine. Indeed, passively administered neutralizing antibodies have been shown to protect against HIV challenge in some of the best available animal models. For example, antibodies given intravenously can protect macaques against intravenous or mucosal SHIV (an HIV/SIV chimaera) challenge and topically applied antibodies can protect macaques against vaginal SHIV challenge. However, the mechanism(s) by which neutralizing antibodies afford protection against HIV is not understood and, in particular, the role of antibody Fc-mediated effector functions is unclear. Here we report that there is a dramatic decrease in the ability of a broadly neutralizing antibody to protect macaques against SHIV challenge when Fc receptor and complement-binding activities are engineered out of the antibody. No loss of antibody protective activity is associated with the elimination of complement binding alone. Our in vivo results are consistent with in vitro assays indicating that interaction of Fc-receptor-bearing effector cells with antibody-complexed infected cells is important in reducing virus yield from infected cells. Overall, the data suggest the potential importance of activity against both infected cells and free virus for effective protection against HIV.
Asunto(s)
Vacunas contra el SIDA/inmunología , Proteínas del Sistema Complemento/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH/inmunología , Receptores Fc/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Complemento C1q/inmunología , Complemento C3/inmunología , Femenino , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/genética , Antígenos VIH/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/virología , Humanos , Inmunidad Mucosa/inmunología , Macaca mulatta/inmunología , Macaca mulatta/virología , Pruebas de Neutralización , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Factores de Tiempo , Carga ViralRESUMEN
Natural infection with simian retrovirus (SRV) has long been recognized in rhesus macaques (RMs) and may result in an AIDS-like disease. Importantly, SRV infections persist as a problem in recently imported macaques. Therefore, there is a clear need to control SRV spread in macaque colonies. We developed a recombinant vesicular stomatitis virus (VSV)-SRV vaccine consisting of replication-competent hybrid VSVs that express SRV gag and env in separate vectors. The goal of this study was to assess the immunogenicity and protective efficacy of the VSV-SRV serotype 2 vaccine prime-boost approach in RMs. The VSV-SRV vector (expressing either SRV gag or env) vaccines were intranasally administered in 4 RMs, followed by a boost 1 month after the first vaccination. Four RMs served as controls and received the VSV vector alone. Two months after the boost, all animals were intravenously challenged with SRV-2 and monitored for 90 days. After the SRV-2 challenge, all four controls became infected, and viral loads (VLs) ranged from 10(6) to 10(8) SRV RNA copies/ml of plasma. Two animals in the control group developed simian AIDS within 7 to 8 weeks postinfection and were euthanized. Anemia and weight loss were observed in the remaining controls. During acute infection, severe B-cell depletion and no significant changes in T-cell population were observed in the control group. Control RMs with greater preservation of B cells and lower VLs survived longer. SRV-2 was undetectable in vaccinated animals, which remained healthy, with no clinical or biological signs of infection and preservation of B cells. Our study showed that the VSV-SRV vaccine is a strong approach for preventing clinically relevant type D retrovirus infection and disease in RMs, with protection of 4/4 RMs from SRV infection and prevention of B-cell destruction. B-cell protection was the strongest correlate of the long-term survival of all vaccinated and control RMs.
Asunto(s)
Linfocitos B/inmunología , Vectores Genéticos/administración & dosificación , Macaca mulatta , Virus del Mono Mason-Pfizer/inmunología , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vesiculovirus/genética , Animales , Productos del Gen env/genética , Productos del Gen env/inmunología , Productos del Gen env/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/inmunología , Productos del Gen gag/metabolismo , Inmunización , Inmunización Secundaria , Virus del Mono Mason-Pfizer/genética , Virus del Mono Mason-Pfizer/patogenicidad , Vacunas contra el SIDAS/genética , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/mortalidad , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , VacunaciónRESUMEN
We analyzed the ability of a vaccine vector based on vesicular stomatitis virus (VSV) to induce a neutralizing antibody (NAb) response to avian influenza viruses (AIVs) in rhesus macaques. Animals vaccinated with vectors expressing either strain A/Hong Kong/156/1997 or strain A/Vietnam/1203/2004 H5 hemagglutinin (HA) were able to generate robust NAb responses. The ability of the vectors to induce NAbs against homologous and heterologous AIVs after a single dose was dependent upon the HA antigen incorporated into the VSV vaccine. The vectors expressing strain A/Vietnam/1203/2004 H5 HA were superior to those expressing strain A/Hong Kong/156/1997 HA at inducing cross-clade NAbs.
Asunto(s)
Anticuerpos Neutralizantes/sangre , Portadores de Fármacos , Vectores Genéticos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vesiculovirus/genética , Animales , Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Macaca mulattaRESUMEN
We constructed vaccine vectors based on live recombinant vesicular stomatitis virus (VSV) and a Semliki Forest virus (SFV) replicon (SFVG) that propagates through expression of the VSV glycoprotein (G). These vectors expressing simian immunodeficiency virus (SIV) Gag and Env proteins were used to vaccinate rhesus macaques with a new heterologous prime-boost regimen designed to optimize induction of antibody. Six vaccinated animals and six controls were then given a high-dose mucosal challenge with the diverse SIVsmE660 quasispecies. All control animals became infected and had peak viral RNA loads of 10(6) to 10(8) copies/ml. In contrast, four of the vaccinees showed significant (P = 0.03) apparent sterilizing immunity and no detectable viral loads. Subsequent CD8(+) T cell depletion confirmed the absence of SIV infection in these animals. The two other vaccinees had peak viral loads of 7 × 10(5) and 8 × 10(3) copies/ml, levels below those of all of the controls, and showed undetectable virus loads by day 42 postchallenge. The vaccine regimen induced high-titer prechallenge serum neutralizing antibodies (nAbs) to some cloned SIVsmE660 Env proteins, but antibodies able to neutralize the challenge virus swarm were not detected. The cellular immune responses induced by the vaccine were generally weak and did not correlate with protection. Although the immune correlates of protection are not yet clear, the heterologous VSV/SFVG prime-boost is clearly a potent vaccine regimen for inducing virus nAbs and protection against a heterogeneous viral swarm.
Asunto(s)
Anticuerpos Antivirales/sangre , Vectores Genéticos/inmunología , Esquemas de Inmunización , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Productos del Gen env/genética , Productos del Gen env/inmunología , Productos del Gen env/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/inmunología , Productos del Gen gag/metabolismo , Vectores Genéticos/administración & dosificación , Inmunización , Inmunización Secundaria , Macaca mulatta , Pruebas de Neutralización , Vacunas contra el SIDAS/genética , Vacunas contra el SIDAS/inmunología , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/metabolismo , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/metabolismo , Carga ViralRESUMEN
Variation in genes underlying host immunity can lead to marked differences in susceptibility to HIV infection among humans. Despite heavy reliance on non-human primates as models for HIV/AIDS, little is known about which host factors are shared and which are unique to a given primate lineage. Here, we investigate whether copy number variation (CNV) at CCL3-like genes (CCL3L), a key genetic host factor for HIV/AIDS susceptibility and cell-mediated immune response in humans, is also a determinant of time until onset of simian-AIDS in rhesus macaques. Using a retrospective study of 57 rhesus macaques experimentally infected with SIVmac, we find that CCL3L CNV explains approximately 18% of the variance in time to simian-AIDS (p<0.001) with lower CCL3L copy number associating with more rapid disease course. We also find that CCL3L copy number varies significantly (p<10(-6)) among rhesus subpopulations, with Indian-origin macaques having, on average, half as many CCL3L gene copies as Chinese-origin macaques. Lastly, we confirm that CCL3L shows variable copy number in humans and chimpanzees and report on CCL3L CNV within and among three additional primate species. On the basis of our findings we suggest that (1) the difference in population level copy number may explain previously reported observations of longer post-infection survivorship of Chinese-origin rhesus macaques, (2) stratification by CCL3L copy number in rhesus SIV vaccine trials will increase power and reduce noise due to non-vaccine-related differences in survival, and (3) CCL3L CNV is an ancestral component of the primate immune response and, therefore, copy number variation has not been driven by HIV or SIV per se.
Asunto(s)
Quimiocina CCL3/genética , Dosificación de Gen , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Animales , Calibración , Cartilla de ADN/química , Progresión de la Enfermedad , Genética de Población , Sistema Inmunológico , Funciones de Verosimilitud , Macaca mulatta , Repeticiones de Microsatélite , Modelos Estadísticos , Modelos de Riesgos Proporcionales , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
HIV vaccine mediated efficacy, using an expanded live attenuated recombinant varicella virus-vectored SIV rSVV-SIVgag/env vaccine prime with adjuvanted SIV-Env and SIV-Gag protein boosts, was evaluated in a female rhesus macaques (RM) model against repeated intravaginal SIV challenges. Vaccination induced anti-SIV IgG responses and neutralizing antibodies were found in all vaccinated RMs. Three of the eight vaccinated RM remained uninfected (vaccinated and protected, VP) after 13 repeated challenges with the pathogenic SIVmac251-CX-1. The remaining five vaccinated and infected (VI) macaques had significantly reduced plasma viral loads compared with the infected controls (IC). A significant increase in systemic central memory CD4+ T cells and mucosal CD8+ effector memory T-cell responses was detected in vaccinated RMs compared to controls. Variability in lymph node SIV-Gag and Env specific CD4+ and CD8+ T cell cytokine responses were detected in the VI RMs while all three VP RMs had more durable cytokine responses following vaccination and prior to challenge. VI RMs demonstrated predominately SIV-specific monofunctional cytokine responses while the VP RMs generated polyfunctional cytokine responses. This study demonstrates that varicella virus-vectored SIV vaccination with protein boosts induces a 37.5% efficacy rate against pathogenic SIV challenge by generating mucosal memory, virus specific neutralizing antibodies, binding antibodies, and polyfunctional T-cell responses.
Asunto(s)
Varicela , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Femenino , Virus de la Inmunodeficiencia de los Simios/genética , Macaca mulatta , Vacunas Sintéticas/genética , Vacunas contra el SIDAS/genética , Anticuerpos Neutralizantes , Citocinas , Anticuerpos AntiviralesRESUMEN
Although current postexposure prophylaxis rabies virus (RV) vaccines are effective, approximately 40,000-70,000 rabies-related deaths are reported annually worldwide. The development of effective formulations requiring only 1-2 applications would significantly reduce mortality. We assessed in mice and nonhuman primates the efficacy of replication-deficient RV vaccine vectors that lack either the matrix (M) or phosphoprotein (P) gene. A single dose of M gene-deficient RV induced a more rapid and efficient anti-RV response than did P gene-deficient RV immunization. Furthermore, the M gene-deleted RV vaccine induced 4-fold higher virus-neutralizing antibody (VNA) levels in rhesus macaques than did a commercial vaccine within 10 days after inoculation, and at 180 days after immunization rhesus macaques remained healthy and had higher-avidity antibodies, higher VNA titers, and a more potent antibody response typical of a type 1 T helper response than did animals immunized with a commercial vaccine. The data presented in this article suggest that the M gene-deleted RV vaccine is safe and effective and holds the potential of replacing current pre- and postexposure RV vaccines.
Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas Antirrábicas/inmunología , Virus de la Rabia/fisiología , Rabia/prevención & control , Vacunas Atenuadas/inmunología , Animales , Afinidad de Anticuerpos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Eliminación de Gen , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Rabia/inmunología , Vacunas Antirrábicas/efectos adversos , Vacunas Atenuadas/efectos adversos , Replicación ViralAsunto(s)
Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Alelos , Animales , China , Progresión de la Enfermedad , Macaca mulatta , Linaje , Polimorfismo Genético , Análisis de Secuencia de ARN , Viremia/genética , Viremia/inmunología , Replicación ViralRESUMEN
Identification of transmitted/founder simian immunodeficiency virus (SIV) envelope sequences responsible for infection may prove critical for understanding HIV/SIV mucosal transmission. We used single genome amplification and phylogenetic analyses to characterize transmitted/founder SIVs both in the inoculum and in immunized-infected rhesus monkeys. Single genome amplification of the SIVsmE660 inoculum revealed a maximum diversity of 1.4%. We also noted that the consensus sequence of the challenge stock differed from the vaccine construct in 10 amino acids including 3 changes in the V4 loop. Viral env was prepared from rhesus plasma in 3 groups of 6 immunized with vesicular stomatitis virus (VSV) vectors and boosted with Semliki forest virus (SFV) replicons expressing (a) SIVsmE660 gag-env (b) SIVsmE660 gag-env plus rhesus GM-CSF and (c) control influenza hemagglutinin protein. Macaques were immunized twice with VSV-vectors and once with SFV vector and challenged intrarectally with 4000 TCID50. Single genome amplification characterized the infections of 2 unprotected animals in the gag-env immunized group, both of which had reduced acute plasma viral loads that ended as transient infections indicating partial immune control. Four of 6 rhesus were infected in the gag-env + GM-CSF group which demonstrated that GM-CSF abrogated protection. All 6 animals from the control group were infected having high plasma viral loads. We obtained 246 full-length envelope sequences from SIVsmE660 infected macaques at the peak of infection and determined the number of transmitted/founder variants per animal. Our analysis found that 2 of 2 gag-env vaccinated but infected macaques exhibited single but distinct virus envelope lineages whereas rhesus vaccinated with gag-env-GM-CSF or HA control exhibited both single and multiple env lineages. Because there were only 2 infected animals in the gag-env vaccinated rhesus compared to 10 infected rhesus in the other 2 groups, the significance of finding single env variants in the gag-env vaccinated group could not be established.
Asunto(s)
Macaca mulatta/virología , Filogenia , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Proteínas del Envoltorio Viral/genética , Animales , Productos del Gen env/genética , Productos del Gen env/inmunología , Productos del Gen gag/genética , Vectores Genéticos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Inmunización , Macaca mulatta/inmunología , Datos de Secuencia Molecular , Vacunas contra el SIDAS/inmunología , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Estomatitis Vesicular/virología , Proteínas del Envoltorio Viral/inmunología , Carga ViralRESUMEN
OBJECTIVE: Intravaginal exposure to simian immunodeficiency virus (SIV) acutely recruits interferon-alpha (IFN-α) producing plasmacytoid dendritic cells (pDC) and CD4 T-lymphocyte targets to the endocervix of nonhuman primates. We tested the impact of repeated cervicovaginal exposures to noninfectious, defective SIV particles over 72 hours on a subsequent cervicovaginal challenge with replication competent SIV. METHODS: Thirty-four female Indian Rhesus macaques were given a 3-day twice-daily vaginal exposures to either SIVsmB7, a replication-deficient derivative of SIVsmH3 produced by a T lymphoblast CEMx174 cell clone (n = 16), or to CEM supernatant controls (n = 18). On the fourth day, animals were either euthanized to assess cervicovaginal immune cell infiltration or intravaginally challenged with SIVmac251. Challenged animals were tracked for plasma viral load and CD4 counts and euthanized at 42 days after infection. RESULTS: At the time of challenge, macaques exposed to SIVsmB7, had higher levels of cervical CD123 pDCs (P = 0.032) and CD4 T cells (P = 0.036) than those exposed to CEM control. Vaginal tissues showed a significant increase in CD4 T-cell infiltrates (P = 0.048) and a trend toward increased CD68 cellular infiltrates. After challenge, 12 SIVsmB7-treated macaques showed 2.5-fold greater daily rate of CD4 decline (P = 0.0408), and viral load rise (P = 0.0036) as compared with 12 control animals. CONCLUSIONS: Repeated nonproductive exposure to viral particles within a short daily time frame did not protect against infection despite pDC recruitment, resulting instead in an accelerated CD4 T-cell loss with an increased rate of viral replication.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Cuello del Útero/inmunología , Células Dendríticas/inmunología , Endometrio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vagina/inmunología , Animales , Recuento de Linfocito CD4 , Cuello del Útero/virología , Endometrio/virología , Femenino , Macaca mulatta , Plasma/virología , Vagina/virología , Carga ViralRESUMEN
In a previous vaccine study, we reported significant and apparently sterilizing immunity to high-dose, mucosal, simian immunodeficiency virus (SIV) quasi-species challenge. The vaccine consisted of vectors based on vesicular stomatitis virus (VSV) expressing simian immunodeficiency virus (SIV) gag and env genes, a boost with propagating replicon particles expressing the same SIV genes, and a second boost with VSV-based vectors. Concurrent with that published study we had a parallel group of macaques given the same doses of vaccine vectors, but in addition, we included a third VSV vector expressing rhesus macaque GM-CSF in the priming immunization only. We report here that addition of the vector expressing GM-CSF did not enhance CD8 T cell or antibody responses to SIV antigens, and almost completely abolished the vaccine protection against high-dose mucosal challenge with SIV. Expression of GM-CSF may have limited vector replication excessively in the macaque model. Our results suggest caution in the use of GM-CSF as a vaccine adjuvant, especially when expressed by a viral vector. Combining vaccine group animals from this study and the previous study we found that there was a marginal but significant positive correlation between the neutralizing antibody to a neutralization resistant SIV Env and protection from infection.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Animales , Vectores Genéticos , Inmunidad Mucosa , Macaca mulatta , Vacunas contra el SIDAS/administración & dosificación , Vesiculovirus/genéticaRESUMEN
Adjuvants potentiate antigen-specific protective immune responses and can be key elements promoting vaccine effectiveness. We previously reported that the Onchocerca volvulus recombinant protein rOv-ASP-1 can induce activation and maturation of naïve human DCs and therefore could be used as an innate adjuvant to promote balanced Th1 and Th2 responses to bystander vaccine antigens in mice. With a few vaccine antigens, it also promoted a Th1-biased response based on pronounced induction of Th1-associated IgG2a and IgG2b antibody responses and the upregulated production of Th1 cytokines, including IL-2, IFN-γ, TNF-α and IL-6. However, because it is a protein, the rOv-ASP-1 adjuvant may also induce anti-self-antibodies. Therefore, it was important to verify that the host responses to self will not affect the adjuvanticity of rOv-ASP-1 when it is used in subsequent vaccinations with the same or different vaccine antigens. In this study, we have established rOv-ASP-1's adjuvanticity in mice during the course of two sequential vaccinations using two vaccine model systems: the receptor-binding domain (RBD) of SARS-CoV spike protein and a commercial influenza virus hemagglutinin (HA) vaccine comprised of three virus strains. Moreover, the adjuvanticity of rOv-ASP-1 was retained with an efficacy similar to that obtained when it was used for a first vaccination, even though a high level of anti-rOv-ASP-1 antibodies was present in the sera of mice before the administration of the second vaccine. To further demonstrate its utility as an adjuvant for human use, we also immunized non-human primates (NHPs) with RBD plus rOv-ASP-1 and showed that rOv-ASP-1 could induce high titres of functional and protective anti-RBD antibody responses in NHPs. Notably, the rOv-ASP-1 adjuvant did not induce high titer antibodies against self in NHPs. Thus, the present study provided a sound scientific foundation for future strategies in the development of this novel protein adjuvant.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Helmínticos/inmunología , Proteínas del Helminto/inmunología , Vacunas contra la Influenza/inmunología , Onchocerca volvulus/inmunología , Onchocerca volvulus/metabolismo , Proteínas Recombinantes/inmunología , Animales , Formación de Anticuerpos , Femenino , Células HEK293 , Hemaglutininas/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Primates/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunación/métodosRESUMEN
Simian immunodeficiency virus (SIV) lineages have been identified that are endemic to Bioko Island. The time the island formed offers a geological time scale calibration point for dating the most recent common ancestor of SIV. The Bioko viruses cover the whole range of SIV genetic diversity, and each Bioko SIV clade is most closely related to viruses circulating in hosts of the same genus on the African mainland rather than to SIVs of other Bioko species. Our phylogeographic approach establishes that SIV is ancient and at least 32,000 years old. Our conservative calibration point and analyses of gene sequence saturation and dating bias suggest it may be much older.
Asunto(s)
Cercopithecidae/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/clasificación , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Cercopithecus/virología , Colobus/virología , Guinea Ecuatorial , Evolución Molecular , Genes pol , Variación Genética , Geografía , Mandrillus/virología , Datos de Secuencia Molecular , Filogenia , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Factores de TiempoRESUMEN
In an earlier study, our group vaccinated rhesus macaques with vesicular stomatitis virus (VSV) vectors expressing Gag, Pol, and Env proteins from a hybrid simian/human immunodeficiency virus (SHIV). This was followed by a single boost with modified vaccinia virus Ankara (MVA) vectors expressing the same proteins. Following challenge with SHIV89.6P, vaccinated animals cleared challenge virus RNA from the blood by day 150 and maintained normal CD4 T cell counts for 8 months. Here we report on the long-term (>5-year post-challenge) status of these animals and the immunological correlates of long-term protection. Using real-time PCR, we found that viral DNA in peripheral blood mononuclear cells (PBMCs) of the vaccinees declined continuously and fell to below detection (<5copies/10(5)cells) by approximately 3 years post-challenge. SHIV DNA was also below the limit of detection in the lymph nodes of two of the four animals at 5 years post-challenge. We detected long-term persistence of multi-functional Gag-specific CD8(+) T cells in both PBMCs and lymph nodes of the two protected animals with the Mamu A01(+) MHC I allele. All animals also maintained SHIV89.6P neutralizing antibody titers for 5 years. Our results show that this vaccine approach generates solid, long-term control of SHIV infection, and suggest that it is mediated by both cytotoxic T lymphocytes and neutralizing antibody.
Asunto(s)
VIH/inmunología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Recuento de Linfocito CD4 , Linfocitos T CD8-positivos/inmunología , ADN Viral/sangre , VIH/genética , Anticuerpos Anti-VIH/sangre , Humanos , Inmunización Secundaria , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Macaca mulatta , Pruebas de Neutralización , Provirus/genética , ARN Viral/sangre , Vacunas contra el SIDAS/genética , Virus de la Inmunodeficiencia de los Simios/genética , Virus Vaccinia/genética , Vesiculovirus/genética , Carga Viral , ViremiaRESUMEN
Neutralizing antibodies are thought to be crucial for HIV vaccine protection, but studies in animal models suggest that high antibody concentrations are required. This is a major potential hurdle for vaccine design. However, these studies typically apply a large virus inoculum to ensure infection in control animals in single-challenge experiments. In contrast, most human infection via sexual encounter probably involves repeated exposures to much lower doses of virus. Therefore, animal studies may have provided an overestimate of the levels of antibodies required for protection in humans. We investigated whether plasma concentrations of antibody corresponding to relatively modest neutralization titers in vitro could protect macaques from repeated intravaginal exposure to low doses of a simian immunodeficiency virus-HIV chimera (SHIV) that uses the CC chemokine receptor 5 (CCR5) co-receptor. An effector function-deficient variant of the neutralizing antibody was also included. The results show that a substantially larger number of challenges is required to infect macaques treated with neutralizing antibody than control antibody-treated macaques, and support the notion that effector function may contribute to antibody protection. Overall, the results imply that lower amounts of antibody than previously considered protective may provide benefit in the context of typical human exposure to HIV-1.
Asunto(s)
VIH/inmunología , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Antivirales/administración & dosificación , Formación de Anticuerpos/fisiología , Quimera/inmunología , Quimera/virología , Inmunización/métodos , Esquemas de Inmunización , Macaca , Pruebas de Neutralización , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Volumetría , Resultado del TratamientoRESUMEN
Endogenous plasma prolactin and baseline corticosterone concentrations were measured in Dark-eyed Juncos (Junco hyemalis, n=27) photostimulated into migratory condition to look at how these hormones may be linked to the development of migratory condition. In addition to the commonly used assay for corticosterone, a recombinant-derived European starling prolactin assay validated for Dark-eyed juncos was used to measure endogenous prolactin in order to detect small but significant changes in plasma prolactin levels. In response to transfer from short (10.5L:13.5D) to long (18L:6D) days, the birds increased in body mass, fat score, daily food intake, and nocturnal migratory locomotor activity (Zugunruhe). On short-days, both hormones were low (corticosterone mean=2.89ng/mL+/-0.48 SE; prolactin mean=6.43ng/mL+/-1.31 SE). But, within 14 days of photostimulation both hormones increased significantly (Day 14: corticosterone mean=5.71ng/mL+/-0.77 SE; prolactin mean=19.67ng/mL+/-2.81 SE), rising further by Day 48 (corticosterone mean=8.41ng/mL+/-0.72; prolactin mean=112.67ng/mL+/-9.18 SE). On Day 48, birds with the most fat (fat score=3) had significantly higher corticosterone levels than those with less fat (fat score=2). This pattern, albeit not statistically significant, was similar for prolactin. These results illustrate that, independent of the seasonal peak in prolactin associated with the onset of photorefractoriness, plasma prolactin levels can rise, in concert with corticosterone, as birds come into spring migratory condition, providing some support for earlier hypotheses that these two hormones play an integral role in the development of migratory condition. Whether similar changes in plasma prolactin occur with respect to autumn migration, as does baseline corticosterone, has yet to be determined.