Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(2): 318-329, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35058616

RESUMEN

Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-ß, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs with systemic manifestations that define active TB.


Asunto(s)
Granuloma/inmunología , Tuberculosis/inmunología , Antígeno B7-H1/inmunología , Células Cultivadas , Citocinas/inmunología , Perfilación de la Expresión Génica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Pulmón/inmunología , Mycobacterium tuberculosis/inmunología , Células Mieloides/inmunología
3.
J Neurooncol ; 160(1): 221-231, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36203027

RESUMEN

PURPOSE: Systemic chemotherapy including monotherapy with temozolomide (TMZ) or bevacizumab (BEV); two-drug combinations, such as irinotecan (IRI) and BEV, TMZ and BEV and a three-drug combination with TMZ, IRI and BEV (TIB) have been used in treating patients with progressive high-grade gliomas including glioblastoma (GBM). Most patients tolerated these regimens well with known side effects of hypertension, proteinuria, and reversible clinical myelosuppression (CM). However, organ- or system- specific toxicities from chemotherapy agents have never been examined by postmortem study. This is the largest cohort used to address this issue in glioma patients. METHODS: Postmortem tissues (from all major systems and organs) were prospectively collected and examined by standard institution autopsy and neuropathological procedures from 76 subjects, including gliomas (N = 68, 44/M, and 24/F) and brain metastases (N = 8, 5/M, and 3/F) between 2009 and 2019. Standard hematoxylin and eosin (H&E) were performed on all major organs including brain specimens. Electronic microscopic (EM) study was carried out on 14 selected subject's kidney samples per standard EM protocol. Medical records were reviewed with adverse events (AEs) analyzed and graded according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4.03. A swimmer plot was utilized to visualize the timelines of patient history by treatment group. The binary logistic regression models were performed to explore any associations between treatment strategies and incident myelosuppression. RESULTS: Twenty-four glioma subjects were treated with TIB [median: 5.5 (range: 1-25) cycles] at tumor recurrence. Exposure to IRI significantly increased the frequency of CM (p = 0.05). No unexpected adverse events clinically, or permanent end-organ damage during postmortem examination was identified in glioma subjects who had received standard or prolonged duration of BEV, TMZ or TIB regimen-based chemotherapies except rare events of bone marrow suppression. The most common causes of death (COD) were tumor progression (63.2%, N = 43) followed by aspiration pneumonia (48.5%, N = 33) in glioma subjects. No COD was attributed to acute toxicity from TIB. The study also demonstrated that postmortem kidney specimen is unsuitable for studying renal ultrastructural pathological changes due to autolysis. CONCLUSION: There is no organ or system toxicity by postmortem examinations among glioma subjects who received BEV, TMZ or TIB regimen-based chemotherapies regardless of durations except for occasional bone marrow suppression and reversible myelosuppression clinically. IRI, but not the extended use of TMZ, significantly increased CM in recurrent glioma patients. COD most commonly resulted from glioma tumor progression with infiltration to brain stem and aspiration pneumonia.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neumonía por Aspiración , Humanos , Temozolomida/uso terapéutico , Glioblastoma/terapia , Bevacizumab/uso terapéutico , Irinotecán/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Glioma/tratamiento farmacológico
4.
Am J Respir Crit Care Med ; 204(5): 583-595, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015247

RESUMEN

Rationale: Our current understanding of tuberculosis (TB) pathophysiology is limited by a reliance on animal models, the paucity of human TB lung tissue, and traditional histopathological analysis, a destructive two-dimensional approach that provides limited spatial insight. Determining the three-dimensional (3D) structure of the necrotic granuloma, a characteristic feature of TB, will more accurately inform preventive TB strategies.Objectives: To ascertain the 3D shape of the human tuberculous granuloma and its spatial relationship with airways and vasculature within large lung tissues.Methods: We characterized the 3D microanatomical environment of human tuberculous lungs by using micro computed tomography, histopathology, and immunohistochemistry. By using 3D segmentation software, we accurately reconstructed TB granulomas, vasculature, and airways in three dimensions and confirmed our findings by using histopathology and immunohistochemistry.Measurements and Main Results: We observed marked heterogeneity in the morphology, volume, and number of TB granulomas in human lung sections. Unlike depictions of granulomas as simple spherical structures, human necrotic granulomas exhibit complex, cylindrical, branched morphologies that are connected to the airways and shaped by the bronchi. The use of 3D imaging of human TB lung sections provides unanticipated insight into the spatial organization of TB granulomas in relation to the airways and vasculature.Conclusions: Our findings highlight the likelihood that a single, structurally complex lesion could be mistakenly viewed as multiple independent lesions when evaluated in two dimensions. In addition, the lack of vascularization within obstructed bronchi establishes a paradigm for antimycobacterial drug tolerance. Lastly, our results suggest that bronchogenic spread of Mycobacterium tuberculosis reseeds the lung.


Asunto(s)
Granuloma/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/ultraestructura , Tuberculosis Pulmonar/diagnóstico por imagen , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/patogenicidad , Sudáfrica , Microtomografía por Rayos X/métodos
5.
Am J Pathol ; 190(2): 286-294, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31734231

RESUMEN

Murine models of Mycobacterium tuberculosis (Mtb) infection demonstrate progression of M1-like (proinflammatory) and M2-like (anti-inflammatory) macrophage morphology following primary granuloma formation. The Mtb cell wall cording factor, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant and useful molecule for modeling early macrophage-mediated events during establishment of the tuberculosis-induced granuloma pathogenesis. Here, it is shown that TDM is a major driver of the early M1-like macrophage response as seen during initiation of the granulomas of primary pathology. Proinflammatory cytokines tumor necrosis factor-α, IL-1ß, IL-6, and IL-12p40 are produced in lung tissue after administration of TDM to mice. Furthermore, CD11b+CD45+ macrophages with a high surface expression of the M1-like markers CD38 and CD86 were found present in regions of pathology in lungs of mice at 7 days post-TDM introduction. Conversely, only low phenotypic marker expression of M2-like markers CD206 and EGR-2 were present on macrophages. These findings suggest that TDM plays a role in establishment of the M1-like shift in the microenvironment during primary tuberculosis.


Asunto(s)
Adyuvantes Inmunológicos/toxicidad , Factores Cordón/toxicidad , Granuloma/patología , Mediadores de Inflamación/metabolismo , Macrófagos/patología , Mycobacterium/metabolismo , Neumonía/patología , Animales , Femenino , Granuloma/inducido químicamente , Granuloma/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/metabolismo
6.
Am J Respir Cell Mol Biol ; 56(5): 637-647, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28135421

RESUMEN

Although it is accepted that the environment within the granuloma profoundly affects Mycobacterium tuberculosis (Mtb) and infection outcome, our ability to understand Mtb gene expression in these niches has been limited. We determined intragranulomatous gene expression in human-like lung lesions derived from nonhuman primates with both active tuberculosis (ATB) and latent TB infection (LTBI). We employed a non-laser-based approach to microdissect individual lung lesions and interrogate the global transcriptome of Mtb within granulomas. Mtb genes expressed in classical granulomas with central, caseous necrosis, as well as within the caseum itself, were identified and compared with other Mtb lesions in animals with ATB (n = 7) or LTBI (n = 7). Results were validated using both an oligonucleotide approach and RT-PCR on macaque samples and by using human TB samples. We detected approximately 2,900 and 1,850 statistically significant genes in ATB and LTBI lesions, respectively (linear models for microarray analysis, Bonferroni corrected, P < 0.05). Of these genes, the expression of approximately 1,300 (ATB) and 900 (LTBI) was positively induced. We identified the induction of key regulons and compared our results to genes previously determined to be required for Mtb growth. Our results indicate pathways that Mtb uses to ensure its survival in a highly stressful environment in vivo. A large number of genes is commonly expressed in granulomas with ATB and LTBI. In addition, the enhanced expression of the dormancy survival regulon was a key feature of lesions in animals with LTBI, stressing its importance in the persistence of Mtb during the chronic phase of infection.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Granuloma/microbiología , Viabilidad Microbiana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Anaerobiosis , Animales , Perfilación de la Expresión Génica , Granuloma/patología , Pulmón/microbiología , Pulmón/patología , Macaca , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulón/genética , Reproducibilidad de los Resultados , Transcriptoma/genética , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/patología
7.
EBioMedicine ; 105: 105196, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880068

RESUMEN

BACKGROUND: The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS: We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS: We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION: RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING: Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.

8.
Inhal Toxicol ; 25(12): 661-78, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24102467

RESUMEN

Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.


Asunto(s)
Polvo Cósmico/efectos adversos , Pulmón/efectos de los fármacos , Luna , Administración por Inhalación , Animales , Aspartato Aminotransferasas/metabolismo , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , L-Lactato Deshidrogenasa/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Nivel sin Efectos Adversos Observados , Ratas , Ratas Endogámicas F344 , Pruebas de Toxicidad Subaguda , gamma-Glutamiltransferasa/metabolismo
9.
Ann Clin Lab Sci ; 53(1): 153-158, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36889761

RESUMEN

OBJECTIVE: Concurrent infection with COVID-19 and M. tuberculosis has been reported to be more severe than either alone, resulting in increased mortality. Our objective was to define the shared pathobiology of COVID-19 and the developmental stage of TB in the lung and explore adjunctive therapies to treat such commonalities. METHODS: Since morphoproteomics combines the disciplines of histopathology, molecular biology and protein chemistry to paint a portrait of the protein circuitry in diseased cells for the purpose of uncovering targets amenable to specific intervention [1], we used morphoproteomic analyses to study lung tissues of patients with early post-primary tuberculosis or COVID-19 infection. RESULTS: These studies showed co-localization of the COVID-19 virus and M. tuberculosis antigens with cyclo-oxygenase-2 and fatty acid synthase in the reactive alveolar pneumocytes and with programmed death-ligand 1 expression on the alveolar interstitium and alveolar pneumocytes. This was associated with accumulation of pro-infectious M2 polarized macrophages in the alveolar spaces. CONCLUSION: The commonalities in these pathways suggest that they might be susceptible to adjunctive therapies with metformin and vitamin D3. This is supported by published studies that metformin and vitamin D3 could reduce the severity of both COVID-19 and early post-primary TB infections.


Asunto(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humanos , Pulmón , Tuberculosis/tratamiento farmacológico , Colecalciferol
10.
Pathogens ; 12(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38133309

RESUMEN

OBJECTIVES: Primary and post-primary tuberculosis (TB) are distinct entities. The aim of this study was to study the histopathology of primary and post-primary TB by using the unique human autopsy material from the pre-antibiotic era, 1931-1947. MATERIAL AND METHODS: Autopsy data were collected from the autopsy journals, and the human tissue was collected from the pathology archives at the Department of Pathology, the Gades Institute. RESULTS: Histological presentations of TB lesions showed great diversity within a single lung. Post-primary TB starts as a pneumonia forming early lesions, characterized by the infiltration of foamy macrophages containing mycobacterial antigens within alveoli, and progressing to necrotic pneumonias with an increasing density of mycobacterial antigens in the lesions. These necrotic pneumonic lesions appeared to either resolve as fibrocaseous lesions or lead to cavitation. The typical granulomatous inflammation, the hallmark of TB lesions, appeared later in the post-primary TB and surrounded the pneumonic lesions. These post-primary granulomas contained lesser mycobacterial antigens as compared to necrotic pneumonia. CONCLUSIONS: Immunopathogenesis of post-primary TB is different from primary TB and starts as pneumonia. The early lesions of post-primary TB may progress or regress, holding the key to understanding how a host can develop the disease despite an effective TB immunity.

11.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873458

RESUMEN

Rationale: Accurate TB diagnosis is hampered by the variable efficacy of the widely-used Ziehl-Neelsen (ZN) staining method to identify Mycobacterium tuberculosis ( Mtb ) acid-fast bacilli (AFB). Here, we sought to circumvent this current limitation through direct detection of Mtb mRNA. Objectives: To employ RNAscope to determine the spatial distribution of Mtb mRNA within tuberculous human tissue, to appraise ZN-negative tissue from confirmed TB patients, and to provide proof-of-concept of RNAscope as a platform to inform TB diagnosis and Mtb biology. Methods: We examined ante- and postmortem human TB tissue using RNAscope to detect Mtb mRNA and a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). Measurements and main results: We adapted RNAscope for Mtb and identified intact and disintegrated Mtb bacilli and intra- and extracellular Mtb mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchial epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. Conclusions: RNAscope has diagnostic potential and can guide therapeutic intervention as it detects Mtb mRNA and morphology in ZN-negative tissues from TB patients, and Mtb mRNA in ZN-negative antemortem biopsies, respectively. Lastly, our data provide evidence that at least two phenotypically distinct populations of Mtb bacilli exist in vivo .

12.
Ann Clin Lab Sci ; 52(6): 991-995, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36564062

RESUMEN

OBJECTIVE: Influenza pandemic of the human lung was caused by the Influenza A (H1N1) over 100 years ago in 1918, but it recurred in pandemic fashion in 2009. Understanding the pathobiology of this infectious agent in the human lung could lead to adjuvant therapies that are relatively non-toxic and reduce the mortality of the human host. Overall, our objective was to apply morphoproteomics to pulmonary lung sections from an autopsied victim so that we may better define its biology from the perspective of its interaction with the host and provide options for therapeutic targets. METHODS: Morphoproteomic analysis from a case study of this Influenza A (H1N1) pulmonary infection included immunohistochemical probes to detect the expressions of fatty acid synthase (FAS), CD163+ (M2 polarized monocytes/macrophages), and programmed death-ligand 1 (PD-L1) expression as part of the host response to interaction with the Influenza A (H1N1) virus. RESULTS: Representative sections of the Influenza A (H1N1) victim's lung showed: cytoplasmic expression of FAS in most of the sloughed and atypical alveolar pneumocytes; abundance of intra-alveolar and alveolar interstitial CD163+ macrophages/monocytes; and PD-L1 expression on occasional macrophages, and focally on collections of alveolar pneumocytes and the alveolar interstitium. CONCLUSION: Morphoproteomics and microanatomical features coincide with the etiopathogenic features of pulmonary Influenza A (H1N1) infection and the host response. This plus data mining of the medical literature suggests that adjunctive, targeted therapy such as metformin and vitamin D3 could address the biology of Influenza A (H1N1) pneumonia, enhance the host immune response, and prevent its progression to a life-threatening, ventilator-dependent clinical situation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Antígeno B7-H1 , Pulmón/patología , Células Epiteliales Alveolares
13.
EMBO Mol Med ; 14(11): e16283, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36285507

RESUMEN

Our current understanding of the spectrum of TB and COVID-19 lesions in the human lung is limited by a reliance on low-resolution imaging platforms that cannot provide accurate 3D representations of lesion types within the context of the whole lung. To characterize TB and COVID-19 lesions in 3D, we applied micro/nanocomputed tomography to surgically resected, postmortem, and paraffin-embedded human lung tissue. We define a spectrum of TB pathologies, including cavitary lesions, calcium deposits outside and inside necrotic granulomas and mycetomas, and vascular rearrangement. We identified an unusual spatial arrangement of vasculature within an entire COVID-19 lobe, and 3D segmentation of blood vessels revealed microangiopathy associated with hemorrhage. Notably, segmentation of pathological anomalies reveals hidden pathological structures that might otherwise be disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID-19 lobes. These findings provide unexpected new insight into the spatial organization of the spectrum of TB and COVID-19 lesions within the framework of the entire lung.


Asunto(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Tomografía Computarizada por Rayos X
14.
Neuroimmunomodulation ; 18(4): 212-25, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21389736

RESUMEN

Granulomatous structures are highly dynamic during active mycobacterial infection, with accompanying responsive inflammation contributing to modulation of pathology throughout the course of disease. The heightened inflammatory response coinciding with initiation and maintenance of newly developing granulomatous structures must be limited to avoid excessive damage to bystander tissue. Modulating the cellular bioavailability of glucocorticoids by local regulation of 11ßHSD enzymes within responding tissue and parenchyma would allow controlled inflammatory response during infection. Mycobacterial glycolipid trehalose 6,6'-dimycolate was used to induce strong pulmonary granulomatous inflammation immunopathology. Pulmonary corticosterone was significantly increased at days 3 and 5 after administration. An inverse relationship of 11ßHSD1 and 11ßHSD2 message correlated with pathology development. Immunohistochemical analysis also demonstrated that 11ßHSD2 is expressed in proximity to granulomatous lesions. A role for pro-inflammatory IL-6 cytokine in regulation of converting enzymes to control the granulomatous response was confirmed using gene-disrupted IL-6-/- mice. A model is proposed linking IL-6 to endocrine-derived factors which allows modification of active corticosterone into inert 11-dehydrocorticosterone at the site of granuloma formation to limit excessive parenchymal damage.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Granuloma del Sistema Respiratorio/enzimología , Granuloma del Sistema Respiratorio/patología , Interleucina-6/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/inmunología , Animales , Factores Cordón/toxicidad , Corticosterona/análisis , Corticosterona/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Expresión Génica , Regulación de la Expresión Génica/inmunología , Granuloma del Sistema Respiratorio/inmunología , Inmunohistoquímica , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/análisis , Radioinmunoensayo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Clin Dev Immunol ; 2011: 307631, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21197439

RESUMEN

Postprimary tuberculosis occurs in immunocompetent people infected with Mycobacterium tuberculosis. It is restricted to the lung and accounts for 80% of cases and nearly 100% of transmission. Little is known about the immunopathology of postprimary tuberculosis due to limited availability of specimens. Tissues from 30 autopsy cases of pulmonary tuberculosis were located. Sections of characteristic lesions of caseating granulomas, lipid pneumonia, and cavitary stages of postprimary disease were selected for immunohistochemical studies of macrophages, lymphocytes, endothelial cells, and mycobacterial antigens. A higher percentage of cells in lipid pneumonia (36.1%) and cavitary lesions (27.8%) were positive for the dendritic cell marker DEC-205, compared to granulomas (9.0%, P < .05). Cavities contained significantly more T-regulatory cells (14.8%) than found in lipid pneumonia (5.2%) or granulomas (4.8%). Distribution of the immune cell types may contribute to the inability of the immune system to eradicate tuberculosis.


Asunto(s)
Antígenos CD , Lectinas Tipo C , Receptores de Superficie Celular , Linfocitos T Reguladores , Tuberculosis Pulmonar , Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Antígenos CD/análisis , Antígenos CD/inmunología , Autopsia , Biomarcadores/análisis , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Espumosas/inmunología , Células Espumosas/patología , Granuloma/inmunología , Granuloma/microbiología , Granuloma/patología , Humanos , Inmunohistoquímica , Lectinas Tipo C/análisis , Lectinas Tipo C/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Antígenos de Histocompatibilidad Menor , Mycobacterium tuberculosis/inmunología , Especificidad de Órganos , Neumonía Lipoidea/inmunología , Neumonía Lipoidea/microbiología , Neumonía Lipoidea/patología , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
16.
Pathogens ; 10(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959527

RESUMEN

The characteristic lesion of primary tuberculosis is the granuloma as is widely studied in human tissues and animal models. Post-primary tuberculosis is different. It develops only in human lungs and begins as a prolonged subclinical obstructive lobular pneumonia that slowly accumulates mycobacterial antigens and host lipids in alveolar macrophages with nearby highly sensitized T cells. After several months, the lesions undergo necrosis to produce a mass of caseous pneumonia large enough to fragment and be coughed out to produce a cavity or be retained as the focus of a post-primary granuloma. Bacteria grow massively on the cavity wall where they can be coughed out to infect new people. Here we extend these findings with the demonstration of secreted mycobacterial antigens, but not acid fast bacilli (AFB) of M. tuberculosis in the cytoplasm of ciliated bronchiolar epithelium and alveolar pneumocytes in association with elements of the programmed death ligand 1 (PD-L1), cyclo-oxygenase (COX)-2, and fatty acid synthase (FAS) pathways in the early lesion. This suggests that M. tuberculosis uses its secreted antigens to coordinate prolonged subclinical development of the early lesions in preparation for a necrotizing reaction sufficient to produce a cavity, post-primary granulomas, and fibrocaseous disease.

17.
Pathogens ; 9(10)2020 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020397

RESUMEN

Research on the pathogenesis of tuberculosis (TB) has been hamstrung for half a century by the paradigm that granulomas are the hallmark of active disease. Human TB, in fact, produces two types of granulomas, neither of which is involved in the development of adult type or post-primary TB. This disease begins as the early lesion; a prolonged subclinical stockpiling of secreted mycobacterial antigens in foamy alveolar macrophages and nearby highly sensitized T cells in preparation for a massive necrotizing hypersensitivity reaction, the Koch Phenomenon, that produces caseous pneumonia that is either coughed out to form cavities or retained to become the focus of post-primary granulomas and fibrocaseous disease. Post-primary TB progresses if the antigens are continuously released and regresses when they are depleted. This revised paradigm is supported by nearly 200 years of research and suggests new approaches and animal models to investigate long standing mysteries of human TB and vaccines that inhibit the early lesion to finally end its transmission.

18.
Ann Clin Lab Sci ; 50(4): 429-438, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32826237

RESUMEN

Post-primary tuberculosis (TB) disease is characterized by paucibacillary necrosis of the early lesion, tuberculous pneumonia, in the adult human lung. The mechanism is speculated to be a strong localized delayed type hypersensitive response (DTH). However, up to this date, no one has been able to identify the source of the large accumulation of MTB antigens required for the DTH response. Although it is known and accepted that the pathogen, Mycobacterium tuberculosis (MTB), significantly affects macrophage function and activity, few studies have focused on macrophages at the site of the early lesion of developing post-primary MTB in human lungs. In vitro studies have examined the effect of MTB on skewing the macrophage phenotype, specifically the dynamic of the M1 and M2 differentiation. Additionally, it is also well documented that MTB infection induces macrophages to become foamy, accumulating host, and potentially MTB, lipids in the cytoplasm. The foamy macrophage is necessary for prolonging MTB survival in the infected lung. Using autopsy derived lung samples from untreated TB diseased individuals, this report, by applying morphoproteomics, demonstrates that the alveolar macrophages present in the early lesion of TB are primarily of the M2 phenotype. The M2 foamy alveolar macrophages (FAM) are also loaded with MTB antigens by immunohistochemistry and are paucibacillary. Moreover, the M2 alveolar macrophages predominately express PD-L1, leading to suppression of PD-1+ lymphocytes and host immunosurveillance. These morphoproteomic analyses indicate that early lesion of MTB in the adult human lung leads to a skewed M2 foamy alveolar macrophage phenotype that creates a protective microenvironment that accumulates high concentrations of MTB antigens, which when released can lead to necrosis and eventual cavitation.


Asunto(s)
Macrófagos Alveolares/metabolismo , Tuberculosis/inmunología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Humanos , Pulmón/patología , Macrófagos/microbiología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Necrosis/patología , Fenotipo , Tuberculosis Pulmonar/inmunología
19.
Ann Clin Lab Sci ; 50(3): 308-313, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32581017

RESUMEN

OBJECTIVE: The COVID-19 pandemic has challenged the world economically and medically. Understanding and defining the biology of this specific coronavirus infection may lead to targeted therapies to lessen its virulence and expand the host resistance. This study's objective was to apply morphoproteomics to pulmonary lung sections from a forensic autopsy of an untreated COVID-19 victim, so that we may better define its biology from the perspective of its interaction with the host and provide options for therapeutic targets. DESIGN: Morphoproteomic analysis from a case study of this COVID-19 pulmonary infection included immunohistochemical probes to detect phosphorylated p-STAT3 (Tyr 705), as part of the interleukin (IL)-6 pathway; cyclooxygenase (COX)-2, CD8+ cytotoxic lymphocytes, Programmed Death (PD)-1 receptor+ lymphoid cells, CD56+ NK lymphoid cells, CD163+ (M2 polarized monocytes/macrophages), and programmed death-ligand 1 (PD-L1) expression as part of the host response to interaction with the COVID-19 virus. RESULTS: Representative sections of the COVID-19 victim's lung showed: nuclear expression of p-STAT3 (Tyr 705) in many of the alveolar pneumocytes and in occasional endothelial cells; COX-2 expression in the alveolar pneumocytes; a relative paucity of CD8+ cytotoxic lymphocytes; absence of CD56+ NK lymphoid cells; abundance of intra-alveolar and alveolar interstitial CD163+ macrophages/monocytes; PD-L1 expression on occasional macrophages, focally on collections of alveolar pneumocytes, and on cells in the alveolar interstitium; and rare PD-1+ lymphocytes in similar regions as CD8+ lymphocytes. CONCLUSION: Morphoproteomics and microanatomical features coincide with the etiopathogenic features of pulmonary coronavirus infection and the host response. This suggests that a targeted therapy could address the biology of COVID-19 pneumonia, enhance the host immune response and prevent its progression to a life-threatening, ventilator-dependent clinical situation.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Biomarcadores/metabolismo , Infecciones por Coronavirus/complicaciones , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Neumonía Viral/complicaciones , Proteoma/análisis , Biomarcadores/análisis , COVID-19 , Infecciones por Coronavirus/virología , Resultado Fatal , Humanos , Enfermedades Pulmonares/etiología , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , Proteoma/metabolismo , SARS-CoV-2
20.
Front Immunol ; 11: 1599, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793233

RESUMEN

Although classically associated with myelopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) is being increasingly recognized for its potential role in innate resistance against tuberculosis (TB). While the GM-CSF is produced by a variety of host cells, including conventional and non-conventional T cells, macrophages, alveolar epithelial cells, the cell population that promotes GM-CSF mediated innate protection against Mycobacterium tuberculosis infection remains unclear. This is because studies related to the role of GM-CSF so far have been carried out in murine models of experimental TB, which is inherently susceptible to TB as compared to humans, who exhibit a resolution of infection in majority of cases. We found a significantly higher amount of GM-CSF production by human macrophages, compared to mouse macrophages, after infection with M. tuberculosis in vitro. The higher levels of GM-CSF produced by human macrophages were also directly correlated with their increased life span and ability to control M. tuberculosis infection. Other evidence from recent studies also support that M. tuberculosis infected human macrophages display heterogeneity in their antibacterial capacity, and cells with increased expression of genes involved in GM-CSF signaling pathway can control intracellular M. tuberculosis growth more efficiently. Collectively, these emerging evidence indicate that GM-CSF produced by lung resident macrophages could be vital for the host resistance against M. tuberculosis infection in humans. Identification of GM-CSF dependent key cellular pathways/processes that mediate intracellular host defense can lay the groundwork for the development of novel host directed therapies against TB as well as other intracellular infections.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Animales , Presentación de Antígeno , Carga Bacteriana , Supervivencia Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Inmunidad Innata , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Especificidad de la Especie , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA