Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(34): 13525-13535, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31345028

RESUMEN

Aqueous solutions of FeCl3 have been widely studied to shed light on a number of processes from dissolution, mineralization, biology, electrocatalysis, corrosion, to microbial biomineralization. Yet there are little to no molecular level studies of the air-liquid FeCl3 interface. Here, both aqueous and glycerol FeCl3 solution surfaces are investigated with polarized vibrational sum frequency generation (SFG) spectroscopy. We also present the first ever extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy measurements of solvated ions and complexes at a solution interface, and observe with both X-ray photoelectron spectroscopy (XPS) and XUV-RA the existence of Fe(III) at the surface and in the near surface regions of glycerol FeCl3 solutions, where glycerol is used as a high vacuum compatible proxy for water. XPS showed Cl- and Fe(III) species with significant Fe(III) interfacial enrichment. In aqueous solutions, an electrical double layer (EDL) of Cl- and Fe(III) species at 0.5 m FeCl3 concentration is observed as evidenced from an enhancement of molecular ordering of water dipoles, consistent with the observed behavior at the glycerol surface. At higher concentrations in water, the EDL appears to be substantially repressed, indicative of further Fe(III) complex enrichment and dominance of a centrosymmetric Fe(III) species that is surface active. In addition, a significant vibrational red-shift of the dangling OH from the water molecules that straddle the air-water interface reveals that the second solvation shell of the surface active Fe(III) complex permeates the topmost layer of the aqueous interface.

2.
Nano Lett ; 18(2): 1228-1233, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29368513

RESUMEN

The ability to observe charge localization in photocatalytic materials on the ultrafast time scale promises to reveal important correlations between excited state electronic structure and photochemical energy conversion. Of particular interest is the ability to determine hole localization in the hybridized valence band of transition metal oxide semiconductors. Using femtosecond extreme ultraviolet reflection absorption (XUV-RA) spectroscopy we directly observe the formation of photoexcited electrons and holes in Fe2O3, Co3O4, and NiO occurring within the 100 fs instrument response. In each material, holes localize to the O 2p valence band states as probed at the O L1-edge, while electrons localize to metal 3d conduction band states on this same time scale as probed at the metal M2,3-edge. Chemical shifts at the O L1-edge enable unambiguous comparison of metal-oxygen (M-O) bond covalency. Pump flux dependent measurements show that the exciton radius is on the order of a single M-O bond length, revealing a highly localized nature of exciton in each metal oxide studied.

3.
Phys Chem Chem Phys ; 20(38): 24545-24552, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30202842

RESUMEN

NiO is widely utilized as a hole transport layer in solar energy devices where light absorption in a photoactive layer is followed by charge separation and hole injection into a NiO collection layer. Due to the complex electronic structure of the hybridized valence band in NiO, the chemical nature of the hole acceptor state has remained an open question, despite the fact that hole localization in this material significantly influences device efficiency. To comment on this, we present results of ultrafast charge carrier dynamics in a NiO based model heterojunction (Fe2O3/NiO) using extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. Element specific XUV-RA spectroscopy demonstrates the formation of transient Ni3+ within 10 ps following selective photoexcitation of the underlying Fe2O3 substrate. This indicates that hole transfer in this system occurs to NiO valence band states composed of significant Ni 3d character. Additionally, we show that this hole injection process proceeds via a two-step sequential mechanism where fast, field-driven exciton dissociation occurs in Fe2O3 in 680 ± 60 fs, followed by subsequent hole injection to NiO in 9.2 ± 2.9 ps. These results reveal the chemical nature of the hole acceptor state in widely used NiO hole transport layers and provides a direct observation of exciton dissociation and interfacial hole transfer in this model system.

4.
Chem Commun (Camb) ; 54(34): 4216-4230, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29637952

RESUMEN

Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

5.
J Phys Chem Lett ; 9(17): 5047-5054, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30091928

RESUMEN

Understanding the chemical nature of defect sites as well as the mechanism of defect-mediated recombination is critical for the rational design of energy conversion materials with improved efficiency. Using femtosecond extreme ultraviolet (XUV) spectroscopy in conjunction with X-ray photoelectron spectroscopy (XPS), we present results on the ultrafast electron dynamics in NiO prepared with varying concentrations of defect states. We find that oxygen vacancy defects do not serve as the primary recombination center, but rather the recombination rate scales linearly with the density of Ni metal defects. This suggests that grain boundaries between Ni metal and NiO are responsible for fast carrier recombination in partially reduced NiO. Our kinetic model shows that the photoexcited electrons self-trap via small polaron formation on the subpicosecond time scale. Additionally, we estimate an absolute measurement of small polaron formation rates, direct versus defect-mediated recombination rates, and the small polaron diffusion coefficient in NiO. This study provides important parameters for engineering NiO based materials for solar energy harvesting applications.

6.
Chem Sci ; 8(12): 8170-8178, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29619171

RESUMEN

Spectroscopically following charge carrier dynamics in catalytic materials has proven to be a difficult task due to the ultrafast timescales involved in charge trapping and the lack of spectroscopic tools available to selectively probe surface electronic structure. Transient extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy is able to follow surface electron dynamics due to its element, oxidation-state, and surface specificity, as well as the ultrafast time-resolution which can be achieved with XUV pulses produced by high harmonic generation. Here, we use ultrafast XUV-RA spectroscopy to show that charge localization and small polaron formation in Fe2O3 occur within ∼660 fs. The photoexcitation of hematite at 400 nm initially leads to an electronically-delocalized ligand-to-metal charge transfer (LMCT) state, which subsequently evolves into a surface localized LMCT state. Comparison of the charge carrier dynamics for single and polycrystalline samples shows that the observed dynamics are negligibly influenced by grain boundaries and surface defects. Rather, correlation between experimental results and spectral simulations reveals that the lattice expansion during small polaron formation occurs on the identical time scale as surface trapping and represents the probable driving force for sub-ps electron localization to the hematite surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA