Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 39(34): 12099-12109, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37587409

RESUMEN

We report the morphology and microstructure of n-dialkyl side-chain-substituted thiophene DPP end-capped with phenyl groups (Ph-TDPP-Ph) thin films and compare the influence of deposition method and substrate surface using thermally oxidized Si and graphene substrates as well as monolayer graphene surfaces with an underlying self-assembled octadecyltrichlorosilane monolayer, complemented by an aging study of spin-coated films over a 2 weeks aging period. A distinct difference in morphology was observed between spin-coated and vacuum-deposited thin films, which formed a fiber-like morphology and a continuous layer of terraced grains, respectively. After an initial film evolution, all combinations of deposition method and substrate type result in well-ordered thin films with almost identical crystalline phases with slight variations in crystallinity and mosaicity. These findings point toward strong intermolecular forces dominating during growth, and the templating effect observed for other oligomer films formed on graphene is consequently ineffective for this material type. Upon aging of spin-coated films, a noticeable evolution involving two different morphologies and crystalline phases were observed. After several days, the thin film evolved into a more stable crystal phase and a fiber-like morphology. Moreover, slight variation in optical spectra were elucidated on the basis on density functional theory calculations. These results demonstrate that thin-film properties of DPP derivatives can be tailored by manipulating the film formation process.

2.
Langmuir ; 36(8): 1898-1906, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027509

RESUMEN

We report on the microstructure, morphology, and growth of 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2) thin films deposited on graphene, characterized by grazing incidence X-ray diffraction (GIXRD) and complemented by atomic force microscopy (AFM) measurements. NaT2 is deposited on two types of graphene surfaces: custom-made samples where chemical vapor deposition (CVD)-grown graphene layers are transferred onto a Si/SiO2 substrate by us and common commercially transferred CVD graphene on Si/SiO2. Pristine Si/SiO2 substrates are used as a reference. The NaT2 crystal structure and orientation depend strongly on the underlying surface, with the molecules predominantly lying down on the graphene surface (face-on orientation) and standing nearly out-of-plane (edge-on orientation) on the Si/SiO2 reference surface. Post growth GIXRD and AFM measurements reveal that the crystalline structure and grain morphology differ depending on whether there is polymer residue left on the graphene surface. In situ GIXRD measurements show that the thickness dependence of the intensity of the (111) reflection from the crystalline edge-on phase does not intersect zero at the beginning of the deposition process, suggesting that an initial wetting layer, corresponding to 1-2 molecular layers, is formed at the surface-film interface. By contrast, the (111) reflection intensity from the crystalline face-on phase grows at a constant rate as a function of film thickness during the entire deposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA