Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO J ; 38(19): e96659, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454099

RESUMEN

Loss of the histone H3.3-specific chaperone component ATRX or its partner DAXX frequently occurs in human cancers that employ alternative lengthening of telomeres (ALT) for chromosomal end protection, yet the underlying mechanism remains unclear. Here, we report that ATRX/DAXX does not serve as an immediate repressive switch for ALT. Instead, ATRX or DAXX depletion gradually induces telomere DNA replication dysfunction that activates not only homology-directed DNA repair responses but also cell cycle checkpoint control. Mechanistically, we demonstrate that this process is contingent on ATRX/DAXX histone chaperone function, independently of telomere length. Combined ATAC-seq and telomere chromatin immunoprecipitation studies reveal that ATRX loss provokes progressive telomere decondensation that culminates in the inception of persistent telomere replication dysfunction. We further show that endogenous telomerase activity cannot overcome telomere dysfunction induced by ATRX loss, leaving telomere repair-based ALT as the only viable mechanism for telomere maintenance during immortalization. Together, these findings implicate ALT activation as an adaptive response to ATRX/DAXX loss-induced telomere replication dysfunction.


Asunto(s)
Proteínas Co-Represoras/genética , Chaperonas Moleculares/genética , Homeostasis del Telómero , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Línea Celular , Reparación del ADN , Eliminación de Gen , Células HEK293 , Humanos , Telomerasa/metabolismo
2.
Am J Physiol Renal Physiol ; 312(2): F323-F334, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27465995

RESUMEN

Fenofibrate activates not only peroxisome proliferator-activated receptor-α (PPARα) but also adenosine monophosphate-activated protein kinase (AMPK). AMPK-mediated cellular responses protect kidney from high-fat diet (HFD)-induced injury, and autophagy resulting from AMPK activation has been regarded as a stress-response mechanism. Thus the present study examined the role of AMPK and autophagy in the renotherapeutic effects of fenofibrate. C57BL/6J mice were divided into three groups: normal diet (ND), HFD, and HFD + fenofibrate (HFD + FF). Fenofibrate was administered 4 wk after the initiation of the HFD when renal injury was initiated. Mouse proximal tubule cells (mProx24) were used to clarify the role of AMPK. Feeding mice with HFD for 12 wk induced insulin resistance and kidney injury such as albuminuria, glomerulosclerosis, tubular injury, and inflammation, which were effectively inhibited by fenofibrate. In addition, fenofibrate treatment resulted in the activation of renal AMPK, upregulation of fatty acid oxidation (FAO) enzymes and antioxidants, and induction of autophagy in the HFD mice. In mProx24 cells, fenofibrate activated AMPK in a concentration-dependent manner, upregulated FAO enzymes and antioxidants, and induced autophagy, all of which were inhibited by treatment of compound C, an AMPK inhibitor. Fenofibrate-induced autophagy was also significantly blocked by AMPKα1 siRNA but not by PPARα siRNA. Collectively, these results demonstrate that delayed treatment with fenofibrate has a therapeutic effect on HFD-induced kidney injury, at least in part, through the activation of AMPK and induction of subsequent downstream effectors: autophagy, FAO enzymes, and antioxidants.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Albuminuria/tratamiento farmacológico , Autofagia/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Dieta Alta en Grasa , Fenofibrato/uso terapéutico , Hipolipemiantes/uso terapéutico , Albuminuria/metabolismo , Animales , Nefropatías Diabéticas/metabolismo , Relación Dosis-Respuesta a Droga , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Resistencia a la Insulina/fisiología , Túbulos Renales Proximales/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Transducción de Señal/efectos de los fármacos
3.
Mediators Inflamm ; 2016: 8675905, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27597806

RESUMEN

Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Catalasa/metabolismo , Macrófagos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Amitrol (Herbicida)/farmacología , Animales , Western Blotting , Catalasa/genética , Línea Celular , Células Cultivadas , Inmunohistoquímica , Resistencia a la Insulina , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Am J Pathol ; 183(5): 1488-1497, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24001475

RESUMEN

Adenosine in the normal kidney significantly elevates in response to cellular damage. The renal A3 adenosine receptor (A3AR) is up-regulated under stress, but the therapeutic effects of A3AR antagonists on chronic kidney disease are not fully understood. The present study examined the effect of LJ-1888 [(2R,3R,4S)-2-[2-chloro-6-(3-iodobenzylamino)-9H-purine-9-yl]-tetrahydrothiophene-3,4-diol], a newly developed potent, selective, species-independent, and orally active A3AR antagonist, on unilateral ureteral obstruction (UUO)-induced renal fibrosis. Pretreatment with LJ-1888 inhibited UUO-induced fibronectin and collagen I up-regulation in a dose-dependent manner. Masson's trichrome staining confirmed that LJ-1888 treatment effectively reduced UUO-induced interstitial collagen accumulation. Furthermore, delayed administration of LJ-1888 showed an equivalent therapeutic effect on tubulointerstitial fibrosis to that of losartan. Small-interfering A3AR transfection effectively inhibited transforming growth factor-ß1 (TGF-ß1)-induced fibronectin and collagen I up-regulation in proximal tubular cells similar to LJ-1888, confirming that the renoprotective effect of LJ-1888 resulted from A3AR blockade. UUO- or TGF-ß1-induced c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation decreased significantly after LJ-1888 administration. A3AR blockade reduced UUO- or TGF-ß1-induced up-regulation of lysyl oxidase, which induces cross-linking of extracellular matrix, suggesting that LJ-1888 may also regulate extracellular matrix accumulation via post-translational regulation. In conclusion, the present data demonstrate that the A3AR antagonist, LJ-1888, blocked the development and attenuated the progression of renal fibrosis, and they suggest that LJ-1888 may become a new therapeutic modality for renal interstitial fibrosis.


Asunto(s)
Antagonistas del Receptor de Adenosina A3/uso terapéutico , Adenosina/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Túbulos Renales Proximales/patología , Receptor de Adenosina A3/metabolismo , Tiofenos/uso terapéutico , Obstrucción Ureteral/complicaciones , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A3/administración & dosificación , Antagonistas del Receptor de Adenosina A3/farmacología , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Proteína-Lisina 6-Oxidasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Tiofenos/farmacología , Factor de Crecimiento Transformador beta1/farmacología , Obstrucción Ureteral/enzimología , Obstrucción Ureteral/patología
5.
Exp Mol Med ; 56(1): 235-249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253797

RESUMEN

Cytochrome b5 reductase 3 (CYB5R3) is involved in various cellular metabolic processes, including fatty acid synthesis and drug metabolism. However, the role of CYB5R3 in cancer development remains poorly understood. Here, we show that CYB5R3 expression is downregulated in human lung cancer cell lines and tissues. Adenoviral overexpression of CYB5R3 suppresses lung cancer cell growth in vitro and in vivo. However, CYB5R3 deficiency promotes tumorigenesis and metastasis in mouse models. Transcriptome analysis revealed that apoptosis- and endoplasmic reticulum (ER) stress-related genes are upregulated in CYB5R3-overexpressing lung cancer cells. Metabolomic analysis revealed that CYB5R3 overexpression increased the production of nicotinamide adenine dinucleotide (NAD+) and oxidized glutathione (GSSG). Ectopic CYB5R3 is mainly localized in the ER, where CYB5R3-dependent ER stress signaling is induced via activation of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme 1 alpha (IRE1α). Moreover, NAD+ activates poly (ADP-ribose) polymerase16 (PARP16), an ER-resident protein, to promote ADP-ribosylation of PERK and IRE1α and induce ER stress. In addition, CYB5R3 induces the generation of reactive oxygen species and caspase-9-dependent intrinsic cell death. Our findings highlight the importance of CYB5R3 as a tumor suppressor for the development of CYB5R3-based therapeutics for lung cancer.


Asunto(s)
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Apoptosis/genética , Citocromo-B(5) Reductasa/metabolismo , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
6.
bioRxiv ; 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798426

RESUMEN

Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following homology-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.

7.
Nat Commun ; 14(1): 1756, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991019

RESUMEN

Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following recombination-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.


Asunto(s)
Proteínas F-Box , Neoplasias , Telomerasa , Humanos , Línea Celular , ADN , Homeostasis del Telómero/genética , Telómero/genética , Telómero/metabolismo , Neoplasias/genética , Telomerasa/genética , Cisteína Endopeptidasas/metabolismo , Proteínas F-Box/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo
8.
Blood Adv ; 7(20): 6211-6224, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37327122

RESUMEN

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and demonstrated its critical role in the synergy observed between the selective PRMT5 inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤ .0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5 inhibition and venetoclax to treat patients with MCL.


Asunto(s)
Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Linfoma de Células del Manto , Sulfonamidas , Animales , Humanos , Ratones , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Calidad de Vida
9.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36282572

RESUMEN

Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.


Asunto(s)
Linfoma de Células del Manto , Humanos , Adulto , Linfoma de Células del Manto/genética , Redes Reguladoras de Genes , Proteína Forkhead Box O1/genética
10.
Free Radic Biol Med ; 169: 74-83, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33862161

RESUMEN

Neural stem/progenitor cells (NSPCs) contribute to the physiological cellular turnover of the adult brain and make up its regenerative potential. It is thus essential to understand how different factors influence their proliferation and differentiation to gain better insight into potential therapeutic targets in neurodegenerative diseases and traumatic brain injuries. Recent evidences indicate the roles of redox stress sensing and coping mechanisms in mediating the balance between NSPC self-renewal and differentiation. Such mechanisms involve direct cysteine modification, signaling and metabolic reprogramming, epigenetic alterations and transcription changes leading to adaptive responses like autophagy. Here, we discuss emerging findings on the involvement of redox sensors and effectors and their mechanisms in influencing changes in cellular redox potential and NSPC fate.


Asunto(s)
Células-Madre Neurales , Diferenciación Celular , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal
11.
Nat Commun ; 12(1): 640, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510167

RESUMEN

Neural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes like elevated oxidative stress. But how oxidative stress regulates NSPC and its neurogenic differentiation is less clear. Here we report that acutely elevated cellular oxidative stress in NSPCs modulates neurogenic differentiation through induction of Forkhead box protein O3 (FOXO3)-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 and its transcriptional target glycine-N-methyltransferase (GNMT) whose upregulation triggers depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which induce cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING-IFN-I cascade to suppress neurogenic differentiation. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that regulates long-term regenerative potential.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Interferón Tipo I/metabolismo , Laminas/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Acetilcisteína/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Depuradores de Radicales Libres/farmacología , Glicina N-Metiltransferasa/metabolismo , Células HEK293 , Herbicidas/farmacología , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Paraquat/farmacología , S-Adenosilmetionina/metabolismo , Transducción de Señal
12.
Cancer Res ; 81(6): 1528-1539, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33509942

RESUMEN

EGFR is frequently amplified, mutated, and overexpressed in malignant gliomas. Yet the EGFR-targeted therapies have thus far produced only marginal clinical responses, and the underlying mechanism remains poorly understood. Using an inducible oncogenic EGFR-driven glioma mouse model system, our current study reveals that a small population of glioma cells can evade therapy-initiated apoptosis and potentiate relapse development by adopting a mesenchymal-like phenotypic state that no longer depends on oncogenic EGFR signaling. Transcriptome analyses of proximal and distal treatment responses identified TGFß/YAP/Slug signaling cascade activation as a major regulatory mechanism that promotes therapy-induced glioma mesenchymal lineage transdifferentiation. Following anti-EGFR treatment, TGFß secreted from stressed glioma cells acted to promote YAP nuclear translocation that stimulated upregulation of the pro-mesenchymal transcriptional factor SLUG and subsequent glioma lineage transdifferentiation toward a stable therapy-refractory state. Blockade of this adaptive response through suppression of TGFß-mediated YAP activation significantly delayed anti-EGFR relapse and prolonged animal survival. Together, our findings shed new insight into EGFR-targeted therapy resistance and suggest that combinatorial therapies of targeting both EGFR and mechanisms underlying glioma lineage transdifferentiation could ultimately lead to deeper and more durable responses. SIGNIFICANCE: This study demonstrates that molecular reprogramming and lineage transdifferentiation underlie anti-EGFR therapy resistance and are clinically relevant to the development of new combinatorial targeting strategies against malignant gliomas with aberrant EGFR signaling.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Transdiferenciación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Recurrencia Local de Neoplasia/epidemiología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Transdiferenciación Celular/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/mortalidad , Glioma/patología , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/prevención & control , Pronóstico , Supervivencia sin Progresión , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
13.
JCI Insight ; 5(9)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229723

RESUMEN

Capicua (CIC), a member of the high mobility group-box (HMG-box) superfamily of transcriptional repressors, is frequently mutated in human oligodendrogliomas. However, its functions in brain development and tumorigenesis remain poorly understood. Here, we report that brain-specific deletion of Cic compromises developmental transition of neuroblasts to immature neurons in mouse hippocampus and compromises normal neuronal differentiation. Combined gene expression and ChIP-seq analyses identified VGF as an important CIC-repressed transcriptional surrogate involved in neuronal lineage regulation. Aberrant VGF expression promotes neural progenitor cell proliferation by suppressing their differentiation. Mechanistically, we demonstrated that CIC represses VGF expression by tethering SIN3-HDAC to form a transcriptional corepressor complex. Mass spectrometry analysis of CIC-interacting proteins further identified the BRG1-containing mSWI/SNF complex whose function is necessary for transcriptional repression by CIC. Together, this study uncovers a potentially novel regulatory pathway of CIC-dependent neuronal differentiation and may implicate these molecular mechanisms in CIC-dependent brain tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Hipocampo/citología , Células-Madre Neurales/citología , Neuronas/citología , Oligodendroglioma/metabolismo , Proteínas Represoras/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Free Radic Biol Med ; 148: 22-32, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31877356

RESUMEN

Peroxisomes are essential organelles for maintaining the homeostasis of lipids and reactive oxygen species (ROS). While oxidative stress-induced endoplasmic reticulum (ER) stress plays an important role in nonalcoholic fatty liver disease (NAFLD), the role of peroxisomes in ROS-mediated ER stress in the development of NAFLD remains elusive. We investigated whether an impaired peroxisomal redox state accelerates NAFLD by activating ER stress by inhibiting catalase, an antioxidant expressed exclusively in peroxisomes. Wild-type (WT) and catalase knockout (CKO) mice were fed either a normal diet or a high-fat diet (HFD) for 11 weeks. HFD-induced phenotype changes and liver injury accompanied by ER stress and peroxisomal dysfunction were accelerated in CKO mice compared to WT mice. Interestingly, these changes were also significantly increased in CKO mice fed a normal diet. Inhibition of catalase by 3-aminotriazole in hepatocytes resulted in the following effects: (i) increased peroxisomal H2O2 levels as measured by a peroxisome-targeted H2O2 probe (HyPer-P); (ii) elevated intracellular ROS; (iii) decreased peroxisomal biogenesis; (iv) activated ER stress; (v) induced lipogenic genes and neutral lipid accumulation; and (vi) suppressed insulin signaling cascade associated with JNK activation. N-acetylcysteine or 4-phenylbutyric acid effectively prevented those alterations. These results suggest that a redox imbalance in peroxisomes perturbs cellular metabolism through the activation of ER stress in the liver.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Catalasa/genética , Catalasa/metabolismo , Estrés del Retículo Endoplásmico , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxisomas/metabolismo
15.
Free Radic Biol Med ; 131: 162-172, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529270

RESUMEN

Chronic kidney disease (CKD) has become epidemic worldwide. Mitochondrial reactive oxygen species (ROS)-induced oxidative stress is an important mediator of CKD, and Prx3 plays a critical role in maintenance of mitochondrial ROS. The present study examined the role of Prx3 in the context of fibrosis, a common feature of CKD, using Prx3 KO mice under obstructive and diabetic stress. Prx3 deficiency accelerated fibrosis and inflammation accompanied by mitochondrial oxidative stress in obstructed and diabetic kidneys as well as in proximal tubular epithelial (mProx) cells. In addition, Prx3 deficiency induced Raw264.7 macrophages activation, leading to upregulation of proinflammatory cytokines. Conditioned media from LPS-stimulated Prx3 deficient macrophages accelerated proinflammatory and profibrotic cytokines in mProx cells. Interestingly, Prx3 deficiency induced most inflammatory and fibrotic cytokines at basal condition in both tissues and cells. Taken together, these results demonstrate that Prx3 deficiency can accelerate CKD through interactions between macrophages and tubular epithelial cells.


Asunto(s)
Diabetes Mellitus Experimental/genética , Células Epiteliales/metabolismo , Proteínas de Homeodominio/genética , Túbulos Renales/metabolismo , Insuficiencia Renal Crónica/genética , Animales , Arginasa/genética , Arginasa/metabolismo , Comunicación Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Medios de Cultivo Condicionados/farmacología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Activación de Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Cultivo Primario de Células , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Estreptozocina
16.
Biomol Ther (Seoul) ; 27(2): 134-144, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30630288

RESUMEN

The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased with the incidence of obesity; however, the underlying mechanisms are unknown. In this study, high-resolution metabolomics (HRM) along with transcriptomics were applied on animal models to draw a mechanistic insight of NAFLD. Wild type (WT) and catalase knockout (CKO) mice were fed with normal fat diet (NFD) or high fat diet (HFD) to identify the changes in metabolic and transcriptomic profiles caused by catalase gene deletion in correspondence with HFD. Integrated omics analysis revealed that cholic acid and 3ß, 7α-dihydroxy-5-cholestenoate along with cyp7b1 gene involved in primary bile acid biosynthesis were strongly affected by HFD. The analysis also showed that CKO significantly changed all-trans-5,6-epoxy-retinoic acid or all-trans-4-hydroxy-retinoic acid and all-trans-4-oxo-retinoic acid along with cyp3a41b gene in retinol metabolism, and α/γ-linolenic acid, eicosapentaenoic acid and thromboxane A2 along with ptgs1 and tbxas1 genes in linolenic acid metabolism. Our results suggest that dysregulated primary bile acid biosynthesis may contribute to liver steatohepatitis, while up-regulated retinol metabolism and linolenic acid metabolism may have contributed to oxidative stress and inflammatory phenomena in our NAFLD model created using CKO mice fed with HFD.

17.
J Clin Invest ; 129(9): 3924-3940, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260412

RESUMEN

Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.


Asunto(s)
Linaje de la Célula , Epigénesis Genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Plasticidad de la Célula , ADN/química , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Trasplante de Neoplasias , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Transducción de Señal , Transcriptoma
18.
Stem Cell Reports ; 10(4): 1208-1221, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29606613

RESUMEN

Loss of a cell's ability to terminally differentiate because of mutations is a selected genetic event in tumorigenesis. Genomic analyses of low-grade glioma have reported recurrent mutations of far upstream element-binding protein 1 (FUBP1). Here, we show that FUBP1 expression is dynamically regulated during neurogenesis and that its downregulation in neural progenitors impairs terminal differentiation and promotes tumorigenesis collaboratively with expression of IDH1R132H. Mechanistically, collaborative action between SRRM4 and FUBP1 is necessary for mini-exon splicing of the neurospecific LSD1+8a isoform. LSD1+8a was downregulated upon loss of FUBP1 in neural progenitors, thereby impairing terminal neuronal differentiation and maturation. Reinforcing LSD1+8a expression in FUBP1-downregulated neural progenitors restored terminal differentiation and suppressed tumorigenesis; hence, LSD1+8a is an obligatory effector of FUBP1-dependent neuronal differentiation. These findings establish a direct role for FUBP1 in neuronal differentiation and also explain its tumor-suppressor function in the nervous system.


Asunto(s)
Empalme Alternativo/genética , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Histona Demetilasas/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Recién Nacidos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Exones/genética , Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo
19.
Aging Cell ; 17(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29178390

RESUMEN

Neurodegeneration resulting in cognitive and motor impairment is an inevitable consequence of aging. Little is known about the genetic regulation of this process despite its overriding importance in normal aging. Here, we identify the Forkhead Box O (FOXO) transcription factor 1, 3, and 4 isoforms as a guardian of neuronal integrity by inhibiting age-progressive axonal degeneration in mammals. FOXO expression progressively increased in aging human and mouse brains. The nervous system-specific deletion of Foxo transcription factors in mice accelerates aging-related axonal tract degeneration, which is followed by motor dysfunction. This accelerated neurodegeneration is accompanied by levels of white matter astrogliosis and microgliosis in middle-aged Foxo knockout mice that are typically only observed in very old wild-type mice and other aged mammals, including humans. Mechanistically, axonal degeneration in nerve-specific Foxo knockout mice is associated with elevated mTORC1 activity and accompanying proteotoxic stress due to decreased Sestrin3 expression. Inhibition of mTORC1 by rapamycin treatment mimics FOXO action and prevented axonal degeneration in Foxo knockout mice with accelerated nervous system aging. Defining this central role for FOXO in neuroprotection during mammalian aging offers an invaluable window into the aging process itself.


Asunto(s)
Axones/metabolismo , Factores de Transcripción Forkhead/metabolismo , Envejecimiento/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Transducción de Señal
20.
J Med Chem ; 57(4): 1344-54, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24456490

RESUMEN

Truncated N(6)-substituted-(N)-methanocarba-adenosine derivatives with 2-hexynyl substitution were synthesized to examine parallels with corresponding 4'-thioadenosines. Hydrophobic N(6) and/or C2 substituents were tolerated in A3AR binding, but only an unsubstituted 6-amino group with a C2-hexynyl group promoted high hA2AAR affinity. A small hydrophobic alkyl (4b and 4c) or N(6)-cycloalkyl group (4d) showed excellent binding affinity at the hA3AR and was better than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f-4i did not differ significantly, with Ki values of 7.8-16.0 nM. N(6)-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects in human TGF-ß1-stimulated mProx tubular cells, a kidney fibrosis model. Most compounds strongly inhibited TGF-ß1-induced collagen I upregulation, and their A3AR binding affinities were proportional to antifibrotic effects; 4b was most potent (IC50 = 0.83 µM), indicating its potential as a good therapeutic candidate for treating renal fibrosis.


Asunto(s)
Agonistas del Receptor de Adenosina A3/síntesis química , Agonistas del Receptor de Adenosina A3/farmacología , Antagonistas del Receptor de Adenosina A3/síntesis química , Antagonistas del Receptor de Adenosina A3/farmacología , Fibrosis/prevención & control , Enfermedades Renales/prevención & control , Nucleósidos/síntesis química , Nucleósidos/farmacología , Agonistas del Receptor de Adenosina A3/química , Agonistas del Receptor de Adenosina A3/uso terapéutico , Antagonistas del Receptor de Adenosina A3/uso terapéutico , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Nucleósidos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA