Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 147(5): 1871-1886, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128553

RESUMEN

Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Vaina de Mielina , Oligodendroglía , Remielinización , Animales , Remielinización/fisiología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Ratones , Oligodendroglía/metabolismo , Oligodendroglía/patología , Humanos , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Diferenciación Celular/fisiología , Cuprizona/toxicidad , Ratones Endogámicos C57BL , Masculino , Femenino , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Ratones Transgénicos
2.
Methods Mol Biol ; 1999: 103-127, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127572

RESUMEN

Regulation of dNTP pools in an intracellular environment is not only vital for DNA replication but also plays a major role in maintaining genomic stability. Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in dNTP synthesis and altered regulation of RNR leads to imbalanced dNTP pools. Increased dNTP levels are mutagenic and have the potential to interfere with pathways that are involved in DNA replication, repair and DNA damage control. However, the mechanisms through which altered dNTP pools affect these pathways are poorly understood. Nonetheless, altered dNTP pools have been identified in a number of cellular contexts, including cancer. In order to interpret and analyze the effects of altered dNTP pools, we need quantitative information about dNTP pools in different genetic and environmental contexts in vivo. Here we describe a high-throughput fluorescence-based assay that uses a qPCR-based approach to quantify dNTP levels for use with Saccharomyces cerevisiae extracts.


Asunto(s)
Desoxirribonucleótidos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Reparación del ADN , Desoxirribonucleótidos/biosíntesis , Fluorescencia , Mutagénesis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Ribonucleótido Reductasas/metabolismo
3.
Nat Neurosci ; 19(7): 879-87, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273766

RESUMEN

Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice, we show that Taz is required in Schwann cells for radial sorting and myelination and that Yap is redundant with Taz. Yap and Taz are activated in Schwann cells by mechanical stimuli and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Vaina de Mielina/metabolismo , Fosfoproteínas/metabolismo , Células de Schwann/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Axones/fisiología , Axones/ultraestructura , Proteínas de Ciclo Celular , Células Cultivadas , Mecanotransducción Celular/fisiología , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Receptores de Laminina/metabolismo , Células de Schwann/citología , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA