Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 626(8000): 864-873, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326607

RESUMEN

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Asunto(s)
Proteínas Inhibidoras de la Diferenciación , Macrófagos del Hígado , Neoplasias , Animales , Humanos , Ratones , Células de la Médula Ósea/citología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linaje de la Célula , Células Madre Pluripotentes Inducidas/citología , Proteínas Inhibidoras de la Diferenciación/deficiencia , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Macrófagos del Hígado/citología , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/metabolismo , Hígado/inmunología , Hígado/patología , Activación de Macrófagos , Proteínas de Neoplasias , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Fagocitosis
2.
Cell Rep ; 43(5): 114236, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38758650

RESUMEN

The tumor microenvironment (TME) presents cells with challenges such as variable pH, hypoxia, and free radicals, triggering stress responses that affect cancer progression. In this study, we examine the stress response landscape in four carcinomas-breast, pancreas, ovary, and prostate-across five pathways: heat shock, oxidative stress, hypoxia, DNA damage, and unfolded protein stress. Using a combination of experimental and computational methods, we create an atlas of stress responses across various types of carcinomas. We find that stress responses vary within the TME and are especially active near cancer cells. Focusing on the non-immune stroma we find, across tumor types, that NRF2 and the oxidative stress response are distinctly activated in immune-regulatory cancer-associated fibroblasts and in a unique subset of cancer-associated pericytes. Our study thus provides an interactome of stress responses in cancer, offering ways to intersect survival pathways within the tumor, and advance cancer therapy.


Asunto(s)
Estrés Oxidativo , Microambiente Tumoral , Humanos , Células del Estroma/metabolismo , Células del Estroma/patología , Neoplasias/metabolismo , Neoplasias/patología , Factor 2 Relacionado con NF-E2/metabolismo , Femenino , Daño del ADN , Respuesta de Proteína Desplegada , Masculino
3.
Cancer Discov ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39028915

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer secreted protein that becomes over-expressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia induced factor-1a (HIF1a) nuclear retention and function. NPTX1 is over-expressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1a hypoxic response in PDAC.

4.
Sci Rep ; 14(1): 15598, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971768

RESUMEN

Although sequence-based studies show that basal-like features lead to worse prognosis and chemotherapy-resistance compared to the classical subtype in advanced pancreatic ductal adenocarcinoma (PDAC), a surrogate biomarker distinguishing between these subtypes in routine diagnostic practice remains to be identified. We aimed to evaluate the utility of immunohistochemistry (IHC) expression subtypes generated by unsupervised hierarchical clustering based on staining scores of four markers (CK5/6, p63, GATA6, HNF4a) applied to endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNAB) materials. EUS-FNAB materials taken from 190 treatment-naïve advanced PDAC patients were analyzed, and three IHC patterns were established (Classical, Transitional, and Basal-like pattern). Basal-like pattern (high co-expression of CK5/6 and p63 with low expression of GATA6 and HNF4a) was significantly associated with squamous differentiation histology (p < 0.001) and demonstrated the worst overall survival among our cohort (p = 0.004). IHC expression subtype (Transitional, Basal vs Classical) was an independent poor prognosticator in multivariate analysis [HR 1.58 (95% CI 1.01-2.38), p = 0.047]. Furthermore, CK5/6 expression was an independent poor prognostic factor in histological glandular type PDAC [HR 2.82 (95% CI 1.31-6.08), p = 0.008]. Our results suggest that IHC expression patterns successfully predict molecular features indicative of the Basal-like subgroup in advanced PDAC. These results provide the basis for appropriate stratification for therapeutic selection and prognostic estimation of advanced PDAC in a simplified manner.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Factor de Transcripción GATA6 , Factor Nuclear 4 del Hepatocito , Inmunohistoquímica , Neoplasias Pancreáticas , Humanos , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Masculino , Femenino , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Anciano , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/genética , Pronóstico , Queratina-5/metabolismo , Queratina-6/metabolismo , Anciano de 80 o más Años , Adulto , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Factores de Transcripción , Proteínas Supresoras de Tumor
5.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352348

RESUMEN

Introduction: Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods: Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results: We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions: Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.

6.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562717

RESUMEN

Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFß signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFß's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.

7.
Clin Cancer Res ; 30(16): 3499-3511, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38864854

RESUMEN

PURPOSE: Intrahepatic cholangiocarcinoma (IHC) is a heterogeneous tumor. The hidden-genome classifier, a supervised machine learning-based algorithm, was used to quantify tumor heterogeneity and improve classification. EXPERIMENTAL DESIGN: A retrospective review of 1,370 patients with IHC, extrahepatic cholangiocarcinoma (EHC), gallbladder cancer (GBC), hepatocellular carcinoma (HCC), or biphenotypic tumors was conducted. A hidden-genome model classified 527 IHC based on genetic similarity to EHC/GBC or HCC. Genetic, histologic, and clinical data were correlated. RESULTS: In this study, 410 IHC (78%) had >50% genetic homology with EHC/GBC; 122 (23%) had >90% homology ("biliary class"), characterized by alterations of KRAS, SMAD4, and CDKN2A loss; 117 IHC (22%) had >50% genetic homology with HCC; and 30 (5.7%) had >90% homology ("HCC class"), characterized by TERT alterations. Patients with biliary- versus non-biliary-class IHC had median overall survival (OS) of 1 year (95% CI, 0.77, 1.5) versus 1.8 years (95% CI, 1.6, 2.0) for unresectable disease and 2.4 years (95% CI, 2.1, NR) versus 5.1 years (95% CI, 4.8, 6.9) for resectable disease. Large-duct IHC (n = 28) was more common in the biliary class (n = 27); the HCC class was composed mostly of small-duct IHC (64%, P = 0.02). The hidden genomic classifier predicted OS independent of FGFR2 and IDH1 alterations. By contrast, the histology subtype did not predict OS. CONCLUSIONS: IHC genetics form a spectrum with worse OS for tumors genetically aligned with EHC/GBC. The classifier proved superior to histologic subtypes for predicting OS independent of FGFR2 and IDH1 alterations. These results may explain the differential treatment responses seen in IHC and may direct therapy by helping stratify patients in future clinical trials.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Colangiocarcinoma/mortalidad , Masculino , Femenino , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/mortalidad , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Isocitrato Deshidrogenasa/genética , Biomarcadores de Tumor/genética , Adulto , Mutación , Pronóstico , Heterogeneidad Genética , Algoritmos , Anciano de 80 o más Años , Aprendizaje Automático , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad
8.
JCO Precis Oncol ; 8: e2300534, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38394469

RESUMEN

PURPOSE: Intrahepatic cholangiocarcinoma (ICCA) is characterized by significant phenotypic and clinical heterogeneities and poor response to systemic therapy, potentially related to underlying heterogeneity in oncogenic alterations. We aimed to characterize the genomic heterogeneity between primary tumors and advanced disease in patients with ICCA. METHODS: Biopsy-proven CCA specimens (primary tumor and paired advanced disease [metastatic disease, progressive disease on systemic therapy, or postoperative recurrence]) from two institutions were subjected to targeted next-generation sequencing. Overall concordance (oncogenic driver mutations, copy number alterations, and fusion events) and mutational concordance (only oncogenic mutations) were compared across paired samples. A subgroup analysis was performed on the basis of exposure to systemic therapy. Patients with extrahepatic CCA (ECCA) were included as a comparison group. RESULTS: Sample pairs from 65 patients with ICCA (n = 54) and ECCA (n = 11) were analyzed. The median time between sample collection was 19.6 months (range, 2.7-122.9). For the entire cohort, the overall oncogenic concordance was 49% and the mutational concordance was 62% between primary and advanced disease samples. Subgroup analyses of ICCA and ECCA revealed overall/mutational concordance rates of 47%/58% and 60%/84%, respectively. Oncogenic concordance was similarly low for pairs exposed to systemic therapy between sample collections (n = 50, 53% overall, 68% mutational). In patients treated with targeted therapy for IDH1/2 alterations (n = 6) or FGFR2 fusions (n = 3), there was 100% concordance between the primary and advanced disease specimens. In two patients, FGFR2 (n = 1) and IDH1 (n = 1) alterations were detected de novo in the advanced disease specimens. CONCLUSION: The results reflect a high degree of heterogeneity in ICCA and argue for reassessment of the dominant driver mutations with change in disease status.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/tratamiento farmacológico , Mutación , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología
9.
bioRxiv ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38328106

RESUMEN

Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

10.
NPJ Precis Oncol ; 8(1): 34, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355834

RESUMEN

Reversion mutations that restore wild-type function of the BRCA gene have been described as a key mechanism of resistance to Poly(ADP-ribose) polymerase (PARP) inhibitor therapy in BRCA-associated cancers. Here, we report a case of a patient with metastatic castration-resistant prostate cancer (mCRPC) with a germline BRCA2 mutation who developed acquired resistance to PARP inhibition. Extensive genomic interrogation of cell-free DNA (cfDNA) and tissue at baseline, post-progression, and postmortem revealed ten unique BRCA2 reversion mutations across ten sites. While several of the reversion mutations were private to a specific site, nine out of ten tumors contained at least one mutation, suggesting a powerful clonal selection for reversion mutations in the presence of therapeutic pressure by PARP inhibition. Variable cfDNA shed was seen across tumor sites, emphasizing a potential shortcoming of cfDNA monitoring for PARPi resistance. This report provides a genomic portrait of the temporal and spatial heterogeneity of prostate cancer under the selective pressure of a PARP inhibition and exposes limitations in the current strategies for detection of reversion mutations.

11.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131366

RESUMEN

Langerhans cell Histiocytosis (LCH) and Erdheim-Chester disease (ECD) are clonal myeloid disorders, associated with MAP-Kinase activating mutations and an increased risk of neurodegeneration. Surprisingly, we found pervasive PU.1+ microglia mutant clones across the brain of LCH and ECD patients with and without neurological symptoms, associated with microgliosis, reactive astrocytosis, and neuronal loss. The disease predominated in the grey nuclei of the rhombencephalon, a topography attributable to a local proliferative advantage of mutant microglia. Presence of clinical symptoms was associated with a longer evolution of the disease and a larger size of PU.1+ clones (p= 0.0003). Genetic lineage tracing of PU.1+ clones suggest a resident macrophage lineage or a bone marrow precursor origin depending on patients. Finally, a CSF1R-inhibitor depleted mutant microglia and limited neuronal loss in mice suggesting an alternative to MAPK inhibitors. These studies characterize a progressive neurodegenerative disease, caused by clonal proliferation of inflammatory microglia (CPIM), with a decade(s)-long preclinical stage of incipient disease that represent a therapeutic window for prevention of neuronal death.

12.
Cancer Res ; 84(7): 947-949, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558127
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA