Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chem Rec ; 24(1): e202300105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37222655

RESUMEN

Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.

2.
Photochem Photobiol Sci ; 21(12): 2071-2083, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35962908

RESUMEN

The photocatalytic activity of TiO2 nanoparticles in aqueous solutions is commonly evaluated by monitoring the rate of methylene blue bleaching and phenols degradation, but both substrates suffer from many drawbacks, e.g., the high capacity of dark adsorption, self-degradation, and photosensitization. Besides, filtration is always required to separate the particulate photocatalyst before the analysis. Herein, we investigated the potential use of electron paramagnetic resonance (EPR) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) to directly monitor the photocatalytic activity of TiO2 suspensions without the need for filtration. The results showed that TEMPOL aqueous solution is in the dark and under UV-A illumination, does not absorb UV-A and visible light, and has negligible dark adsorption. The influence of TEMPOL concentration, light intensity, and TiO2 loading on the photocatalytic deactivation rate has been investigated. The mechanisms of TEMPOL deactivation in the presence and absence of oxygen as well as in the presence of methanol •OH radicals' scavenger have been discussed. The photocatalytic deactivation products have been analyzed using EPR, 1H-NMR, and 13C-NMR spectroscopies. It is found that the deactivation of TEMPOL is initiated by •OH radicals and α-H abstraction from the 4-piperidine position followed by the formation of TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl) and 4-oxo-2,2,6,6-tetramethylpiperidine). In the presence of methanol, the formed α-hydroxyl radicals (•CH2OH) attack the nitroxide side of TEMPOL and produce 4-hydroxy-tetramethylpiperidine. Same activity trends have been observed for the photocatalytic methanol oxidation and TEMPOL deactivation over different types of TiO2 photocatalysts evincing that the proposed method has a potential for direct monitoring of the activities of photocatalyst suspensions.


Asunto(s)
Metanol , Espectroscopía de Resonancia por Spin del Electrón
3.
Magn Reson Chem ; 59(12): 1199-1207, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33656772

RESUMEN

Signal amplification by reversible exchange (SABRE) offers a cost-effective route to boost nuclear magnetic resonance (NMR) signal by several orders of magnitude by employing readily available para-hydrogen as a source of hyperpolarisation. Although 1 H spins have been the natural choice of SABRE hyperpolarisation since its inception due to its simplicity and accessibility, limited spin lifetimes of 1 H makes it harder to employ them in a range of time-dependent NMR experiments. Heteronuclear spins, for example, 13 C and 15 N, in general have much longer T1 lifetimes and thereby are found to be more suitable for hyperpolarised biological applications as demonstrated previously by para-hydrogen induced polarisation (PHIP) and dynamic nuclear polarisation (DNP). In this study we demonstrate a simple procedure to enhance 15 N signal of an antibiotic drug ornidazole by up to 71,000-folds with net 15 N polarisation reaching ~23%. Further, the effect of co-ligand strategy is studied in conjunction with the optimum field transfer protocols and consequently achieving 15 N hyperpolarised spin lifetime of >3 min at low field. Finally, we present a convenient route to harness the hyperpolarised solution in aqueous medium free from catalyst contamination leading to a strong 15 N signal detection for an extended duration of time.


Asunto(s)
Ornidazol , Preparaciones Farmacéuticas , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Agua
4.
Molecules ; 26(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34299467

RESUMEN

The phytochemical analysis of the butanolic extract from the leaves of date palm of Saudi origin resulted in the isolation of three major constituents, oleanolic acid (1), vanillyl alcohol (2), and ß-sitosterol-3-O-ß-d-glucoside (3), which had not been isolated from this plant or previously reported. Together, compounds 1 and 2 account for 1.0% of the butanol extract, which represents 0.4% of the mass of the dried leaves. The isolation of other known compounds for this plant such as fatty acids, lutein, and sucrose was also achieved in this study. The characterization and identification of the isolated compounds were conducted on the basis of Fourier-transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS) analyses. The findings of the current study will definitely increase the knowledge about the contribution of the constituents of this plant to its well-known nutrition, corrosion inhibition, and antimicrobial properties.


Asunto(s)
Phoeniceae/química , Fitoquímicos/análisis , Extractos Vegetales/análisis , Hojas de la Planta/química , Arabia Saudita
5.
Chemphyschem ; 20(2): 241-245, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30199592

RESUMEN

The formation and hyperpolarization of an [Ir(H)2 (amine)(IMes)(η2 -imine)]Cl complex that can be created in a hyperpolarized nuclear singlet state is reported. These complexes are formed when an equilibrium mixture of pyruvate, amine (benzylamine or phenylethylamine), and the corresponding imine condensation product, react with preformed [Ir(H)2 (amine)3 (IMes)]Cl. These iridium α-carboxyimine complexes exist as two regioisomers differentiated by the position of amine. When examined with para-hydrogen the hydride resonances of the isomer with amine trans to hydride become strongly hyperpolarized. The initial hydride singlet states readily transfer to the corresponding 13 C2 state in the labelled imine and exhibit magnetic state lifetimes of up to 11 seconds. Their 13 C signals have been detected with up to 420 fold signal gains at 9.4 T. On a longer timescale, and in the absence of H2 , further reaction leads to the formation of neutral carbonate containing [Ir(amine)(η2 -CO3 )(IMes)(η2 -imine)]. Complexes are characterized by, IR, MS, NMR and X-ray diffraction.

6.
Chemphyschem ; 20(2): 285-294, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30395699

RESUMEN

The hyperpolarization technique, Signal Amplification by Reversible Exchange (SABRE), has the potential to improve clinical diagnosis by making molecular magnetic resonance imaging in vivo a reality. Essential to this goal is the ability to produce a biocompatible bolus for administration. We seek here to determine how the identity of the catalyst and substrate affects the cytotoxicity by in vitro study, in addition to reporting how the use of biocompatible solvent mixtures influence the polarization transfer efficiency. By illustrating this across five catalysts and 8 substrates, we are able to identify routes to produce a bolus with minimal cytotoxic effects.


Asunto(s)
Materiales Biocompatibles/química , Antituberculosos/química , Antituberculosos/farmacología , Materiales Biocompatibles/metabolismo , Catálisis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Deuterio/química , Humanos , Iridio/química , Isoniazida/química , Isoniazida/farmacología , Metano/análogos & derivados , Metano/química , Pirazinamida/química , Pirazinamida/farmacología , Especificidad por Sustrato
7.
Angew Chem Int Ed Engl ; 58(30): 10271-10275, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115970

RESUMEN

Hyperpolarisation methods that premagnetise agents such as pyruvate are currently receiving significant attention because they produce sensitivity gains that allow disease tracking and interrogation of cellular metabolism by magnetic resonance. Here, we communicate how signal amplification by reversible exchange (SABRE) can provide strong 13 C pyruvate signal enhancements in seconds through the formation of the novel polarisation transfer catalyst [Ir(H)2 (η2 -pyruvate)(DMSO)(IMes)]. By harnessing SABRE, strong signals for [1-13 C]- and [2-13 C]pyruvate in addition to a long-lived singlet state in the [1,2-13 C2 ] form are readily created; the latter can be observed five minutes after the initial hyperpolarisation step. We also demonstrate how this development may help with future studies of chemical reactivity.

8.
Phys Chem Chem Phys ; 20(41): 26362-26371, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30303501

RESUMEN

para-Hydrogen (p-H2) induced polarisation (PHIP) is an increasingly popular method for sensitivity enhancement in NMR spectroscopy. Its growing popularity is due in part to the introduction of the signal amplification by reversible exchange (SABRE) method that generates renewable hyperpolarisation in target analytes in seconds. A key benefit of PHIP and SABRE is that p-H2 can be relatively easily and cheaply produced, with costs increasing with the desired level of p-H2 purity. In this work, the efficiency of the SABRE polarisation transfer is explored by measuring the level of analyte hyperpolarisation as a function of the level of p-H2 enrichment. A linear relationship was found between p-H2 enrichment and analyte 1H hyperpolarisation for a range of molecules, polarisation transfer catalysts, NMR detection fields and for both the SABRE and SABRE-Relay transfer mechanisms over the range 29-99% p-H2 purity. The gradient of these linear relationships were related to a simple theoretical model to define an overall efficiency parameter, E, that quantifies the net fraction of the available p-H2 polarisation that is transferred to the target analyte. We find that the efficiency of SABRE is independent of the NMR detection field and exceeds E = 20% for methyl-4,6-d2-nicotinate when using a previously optimised catalyst system. For the SABRE-Relay transfer mechanism, efficiencies of up to E = 1% were found for 1H polarisation of 1-propanol, when ammonia was used as the polarisation carrier.

9.
Chemistry ; 23(44): 10491-10495, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28609572

RESUMEN

Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1 H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase-transfer catalysis is exploited, which leads to less than 1.5×10-6  mol dm-3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline-based hyperpolarized bolus in just a few seconds for subsequent in vivo MRI monitoring. The new process has been called catalyst separated hyperpolarization through signal amplification by reversible exchange or CASH-SABRE. We illustrate this method for the substrates pyrazine, 5-methylpyrimidine, 4,6-d2 -methyl nicotinate, 4,6-d2 -nicotinamide and pyridazine achieving 1 H signal gains of approximately 790-, 340-, 3000-, 260- and 380-fold per proton at 9.4 T at the time point at which phase separation is complete.

10.
Inorg Chem ; 55(22): 11639-11643, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27934314

RESUMEN

[IrCl(COE)2]2 (1) reacts with pyridine (py) and H2 to form crystallographically characterized IrCl(H)2(COE)(py)2 (2). 2 undergoes py loss to form 16-electron IrCl(H)2(COE)(py) (3), with equivalent hydride ligands. When this reaction is studied with parahydrogen, 1 efficiently achieves hyperpolarization of free py (and nicotinamide, nicotine, 5-aminopyrimidine, and 3,5-lutudine) via signal amplification by reversible exchange (SABRE) and hence reflects a simple and readily available precatayst for this process. 2 reacts further over 48 h at 298 K to form crystallographically characterized (Cl)(H)(py)(µ-Cl)(µ-H)(κ-µ-NC5H4)Ir(H)(py)2 (4). This dimer is active in the hydrogen isotope exchange process that is used in radiopharmaceutical preparations. Furthermore, while [Ir(H)2(COE)(py)3]PF6 (6) forms upon the addition of AgPF6 to 2, its stability precludes its efficient involvement in SABRE.

11.
Angew Chem Int Ed Engl ; 54(29): 8415-9, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26013299

RESUMEN

Dioxygen activation by copper complexes is a valuable method to achieve oxidation reactions for sustainable chemistry. The development of a catalytic system requires regeneration of the Cu(I) active redox state from Cu(II). This is usually achieved using extra reducers that can compete with the Cu(II)(O2) oxidizing species, causing a loss of efficiency. An alternative would consist of using a photosensitizer to control the reduction process. Association of a Ru(II) photosensitizing subunit with a Cu(II) pre-catalytic moiety assembled within a unique entity is shown to fulfill these requirements. In presence of a sacrificial electron donor and light, electron transfer occurs from the Ru(II) center to Cu(II). In presence of dioxygen, this dyad proved to be efficient for sulfide, phosphine, and alkene catalytic oxygenation. Mechanistic investigations gave evidence about a predominant (3)O2 activation pathway by the Cu(I) moiety.

12.
Chem Sci ; 14(36): 9843-9853, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736655

RESUMEN

In this work, the limited sensitivity of magnetic resonance is addressed by using the hyperpolarisation method relayed signal amplification by reversible exchange (SABRE-Relay) to transfer latent magnetism from para-hydrogen, a readily isolated spin isomer of hydrogen gas, to components of key plant oils such as citronellol, geraniol, and nerol. This is achieved via relayed polarisation transfer in which an [Ir(H)2(IMes)(NH2R)3]Cl type complex produces hyperpolarised NH2R free in solution, before labile proton exchange between the hyperpolarisation carrier (NH2R) and the OH-containing plant oil component generates enhanced NMR signals for the latter. Consequently, up to ca. 200-fold 1H (0.65% 1H polarisation) and 800-fold 13C NMR signal enhancements (0.65% 13C polarisation) are recorded for these essential oils in seconds. Remarkably, the resulting NMR signals are not only diagnostic, but prove to propagate over large spin systems via a suitable coupling network. A route to optimise the enhancement process by varying the identity of the carrier NH2R, and its concentration is demonstrated. In order to prove utility, these pilot measurements are extended to study a much wider range of plant-derived molecules including rhodinol, verbenol, (1R)-endo-(+)-fenchyl alcohol, (-)-carveol, and linalool. Further measurements are then described which demonstrate citronellol and geraniol can be detected in an off-the-shelf healthcare product rose geranium oil at concentrations of just a few tens of µM in single scan 1H NMR measurements, which are not visible in comparable thermally polarised NMR experiments. This work therefore presents a significant expansion of the types of molecules amenable to hyperpolarisation using para-hydrogen and illustrates a real-world application in the diagnostic detection of low concentration analytes in mixtures.

13.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677984

RESUMEN

The electrochemical conversion of CO2 into value-added chemicals is a promising approach for addressing environmental and energy supply problems. In this study, electrochemical CO2 catalysis to ethanol is achieved using incorporated Cu/CuxO nanoparticles into nitrogenous porous carbon cuboids. Pyrolysis of the coordinated Cu cations with nitrogen heterocycles allowed Cu nanoparticles to detach from the coordination complex but remain dispersed throughout the porous carbon cuboids. The heterogeneous composite Cu/CuxO-PCC-0h electrocatalyst reduced CO2 to ethanol at low overpotential in 0.5 M KHCO3, exhibiting maximum ethanol faradaic efficiency of 50% at -0.5 V vs. reversible hydrogen electrode. Such electrochemical performance can be ascribed to the synergy between pyridinic nitrogen species, Cu/CuxO nanoparticles, and porous carbon morphology, together providing efficient CO2 diffusion, activation, and intermediates stabilization. This was supported by the notably high electrochemically active surface area, rich porosity, and efficient charge transfer properties.

14.
Chemistry ; 18(19): 6063-78, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22473841

RESUMEN

Facial selectivity during the π-coordination of pseudo-tetrahedral iridacycles by neutral (Cr(CO)(3)), monocationic (Cp*Ru(+)), and biscationic (Cp*Ir(2+)) metal centers was directly influenced by the coulombic imbalance in the coordination sphere of the chelated Ir center. We also showed by using theoretical calculations that the feasibility of the related metallacycles that displayed metallocenic planar chirality was dependent to the presence of an electron-donating group, such as NMe(2), which contributed to the overall stability of the complexes. When the π-bonded moiety was the strongly electron-withdrawing Cp*Ir(2+) group, the electron donation from NMe(2) resulted in major conformational changes, with a barrier to rotation of about 17 kcal mol(-1) for this group that became spectroscopically diastereotopic (high-field (1)H NMR spectroscopy). This peculiar property is proposed as a means to introduce a new type of constitutional chirality at the nitrogen center: planar chirality at tertiary aromatic amines.

15.
ACS Omega ; 7(23): 20332-20338, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721930

RESUMEN

This work describes the first report of the known glycosidic constituents ß-sitosterol-3-O-ß-d-glucoside-6'-palmitate (1), ß-sitosterol-3-O-ß-d-glucoside (2), momor-cerebroside I (3), phytolacca cerebroside (4), 1,2-di-O-palmitoyl-3-O-(6-sulfoquinovopyranosyl)-glycerol (5), isorhamnetin-3-robinobioside (6), and isorhamnetin-3-rutinoside (7) from the plant Salsola imbricata Forssk. grown in the eastern region of Saudi Arabia. The structures of the isolated compounds were elucidated from extensive 1D and 2D nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and chemical analyses. Compound 1 is reported for the first time from the Amaranthaceae family. In addition to the isolated and identified fatty alcohols, compounds 3, 4, 5, and 6 are also reported for the first time from the genus Salsola. The findings of this study suggest a contribution of the isolated compounds to the various biological activities reported for this plant.

16.
Chem Commun (Camb) ; 58(14): 2291-2294, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35080536

RESUMEN

Nuclear spin hyperpolarization transforms typically weak NMR responses into strong signals paving the way for low-gamma nuclei detection within practical time-frames. SABRE (Signal Amplification by Reversible Exchange) is a particularly popular hyperpolarization technique due to its simplicity but the pool of molecules it can polarize is limited. The recent advancement in the form of co-ligands has made SABRE applicable towards molecules with O-donor sites e.g. pyruvate, a key step towards its potential clinical application. Here we explore the SABRE hyperpolarization of another compound with an alpha-keto motif, namely oxalate. We show that hyperpolarization of oxalate may be achieved by adjusting the pH in the presence of sulfoxide co-ligands. The SABRE effect for oxalate in methanol solutions is most effective for the mono-protonated form, which is dominant in the solution around pH ∼2.8. The polarization levels become markedly lower at both higher and lower pH. Employing 50% enriched pH2 we achieve up to 0.33% net 13C polarization in mono-protonated oxalate. In an alternative procedure we show that the hyperpolarization effect in oxalates can also be realised by synthesizing an esterified version of it, without any substantive pH implications. Further, the procedures to create hyperpolarized singlet orders in such substrates are also investigated.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120223, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329849

RESUMEN

Linuron is a commonly used organic herbicide which is used in plant growth control. Due to its potential health concerns, the characterization and monitoring of linuron have been a subject of several studies. In this work, we employed nuclear magnetic resonance (NMR) and Raman spectroscopic techniques supported with the density functional theory (DFT) to investigate the conformational behavior and electronic aspects of linuron. The selective nuclear Overhauser effect (SelNOE) spectra confirmed that linuron exists predominantly in the anti configuration and is facilitated with a weak intramolecular hydrogen bonding between the acidic amide proton and oxygen of methoxy moiety. Quantum chemical results showed that the corresponding syn form of the molecule is 8.5 kcal/mol less stable. Further, the surface enhanced Raman scattering (SERS) technique using gold nanoparticles (AuNPs) was implemented as a potential spectroscopic protocol for the concentration monitoring of trace linuron. The Raman responses of four vibrational modes, namely CC stretching, CN stretching, N-H rocking and ring deformation, were successfully enhanced with an excellent linear concentration-intensity dependency. The aromatic CC stretching vibration at 1595 cm-1 in the Raman spectra has demonstrated the highest enhancement factor (6.5 × 104) and the lowest limit of detection (10-7 M). The interaction of linuron with the gold nanocluster was simulated by establishing a simple DFT model which predicted that the most pronounced binding with the gold atom takes place at the benzene ring.


Asunto(s)
Oro , Nanopartículas del Metal , Linurona , Espectroscopía de Resonancia Magnética , Teoría Cuántica , Espectrometría Raman , Vibración
18.
Heliyon ; 7(11): e08474, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34901508

RESUMEN

The work reports a method for monitoring anthracene radical-mediated oxidation reactions using electron paramagnetic resonance (EPR) spectroscopy. The formation of anthracene dimer product was well-defined using 1H-NMR and 1H-1H correlation spectroscopy (COSY). Unrestricted 3-21G/B3LYP DFT was used to estimate radical hyperfine spacing (hfs), then to identify the characteristic EPR-spin transitions of anthracene radical intermediate. A detailed investigation of an anthracene oxidation reaction and its possible reaction mechanism in concentrated sulphuric acid is conducted as a model system for polyaromatic hydrocarbons. Peak-to-peak (p2p) intensities of selected EPR-spectral lines were used to evaluate anthracene's oxidation kinetic model. The findings showed that radical intermediate formation is a unimolecular autocatalytic process, dimerization is a pseudo-zero-order reaction, and the latter is the rate-determining step with a half-life of 48 ± 2 min at 25.0 °C.

19.
Catal Sci Technol ; 10(5): 1343-1355, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32647563

RESUMEN

Hyperpolarisation techniques such as signal amplification by reversible exchange (SABRE) can deliver NMR signals several orders of magnitude larger than those derived under Boltzmann conditions. SABRE is able to catalytically transfer latent magnetisation from para-hydrogen to a substrate in reversible exchange via temporary associations with an iridium complex. SABRE has recently been applied to the hyperpolarisation of pyruvate, a substrate often used in many in vivo MRI studies. In this work, we seek to optimise the pyruvate-13C2 signal gains delivered through SABRE by fine tuning the properties of the active polarisation transfer catalyst. We present a detailed study of the effects of varying the carbene and sulfoxide ligands on the formation and behaviour of the active [Ir(H)2(η2-pyruvate)(sulfoxide)(NHC)] catalyst to produce a rationale for achieving high pyruvate signal gains in a cheap and refreshable manner. This optimisation approach allows us to achieve signal enhancements of 2140 and 2125-fold for the 1-13C and 2-13C sites respectively of sodium pyruvate-1,2-[13C2].

20.
Chem Sci ; 10(33): 7709-7717, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31588319

RESUMEN

The detection of alcohols by magnetic resonance techniques is important for their characterization and the monitoring of chemical change. Hyperpolarization processes can make previously inpractical measurements, such as the determination of low concentration intermediates, possible. Here, we investigate the SABRE-Relay method in order to define its key characteristics and improve the resulting 1H NMR signal gains which subsequently approach 103 per proton. We identify optimal amine proton transfer agents for SABRE-Relay and show how catalyst structure influences the outcome. The breadth of the method is revealed by expansion to more complex alcohols and the polarization of heteronuclei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA