Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982774

RESUMEN

Given the known pro-oxidant status of tumour cells, the development of anti-proliferative strategies focuses on products with both anti- and pro-oxidant properties that can enhance antitumour drug cytotoxicity. We used a C. zeylanicum essential oil (CINN-EO) and assessed its effect on a human metastatic melanoma cell line (M14). Human PBMCs and MDMs from healthy donors were used as normal control cells. CINN-EO induced cell growth inhibition, cell cycle perturbation, ROS and Fe(II) increases, and mitochondrial membrane depolarization. To assess whether CINN-EO could affect the stress response, we analysed iron metabolism and stress response gene expression. CINN-EO increased HMOX1, FTH1, SLC7A11, DGKK, and GSR expression but repressed OXR1, SOD3, Tf, and TfR1 expression. HMOX1, Fe(II), and ROS increases are associated with ferroptosis, which can be reversed by SnPPIX, an HMOX1 inhibitor. Indeed, our data demonstrated that SnPPIX significantly attenuated the inhibition of cell proliferation, suggesting that the inhibition of cell proliferation induced by CINN-EO could be related to ferroptosis. Concurrent treatment with CINN-EO enhanced the anti-melanoma effect of two conventional antineoplastic drugs: the mitochondria-targeting tamoxifen and the anti-BRAF dabrafenib. We demonstrate that CINN-EO-mediated induction of an incomplete stress response specifically in cancer cells affects the proliferation of melanoma cells and can enhance drug cytotoxicity.


Asunto(s)
Melanoma , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Cinnamomum zeylanicum , Especies Reactivas de Oxígeno/farmacología , Proliferación Celular , Melanoma/tratamiento farmacológico , Compuestos Ferrosos/farmacología , Línea Celular Tumoral
2.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575666

RESUMEN

The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.

3.
Mol Neurobiol ; 54(5): 3729-3744, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27221609

RESUMEN

The mouse neuroblastoma N18TG2 clone is unable to differentiate and is defective for the enzymes of the biosynthesis of neurotransmitters. The forced expression of choline acetyltransferase (ChAT) in these cells results in the synthesis and release of acetylcholine (Ach) and hence in the expression of neurospecific features and markers. To understand how the expression of ChAT triggered neuronal differentiation, we studied the differences in genome-wide transcription profiles between the N18TG2 parental cells and its ChAT-expressing 2/4 derived clone. The engagement of the 2/4 cells in the neuronal developmental program was confirmed by the increase of the expression level of several differentiation-related genes and by the reduction of the amount of transcripts of cell cycle genes. At the same time, we observed a massive reorganization of cytoskeletal proteins in terms of gene expression, with the accumulation of the nucleoskeletal lamina component Lamin A/C in differentiating cells. The increase of the Lmna transcripts induced by ChAT expression in 2/4 cells was mimicked treating the parental N18TG2 cells with the acetylcholine receptor agonist carbachol, thus demonstrating the direct role played by this receptor in neuron nuclei maturation. Conversely, a treatment of 2/4 cells with the muscarinic receptor antagonist atropine resulted in the reduction of the amount of Lmna RNA. Finally, the hypothesis that Lmna gene product might play a crucial role in the ChAT-dependent molecular differentiation cascade was strongly supported by Lmna knockdown in 2/4 cells leading to the downregulation of genes involved in differentiation and cytoskeleton formation and to the upregulation of genes known to regulate self-renewal and stemness.


Asunto(s)
Diferenciación Celular , Colina O-Acetiltransferasa/metabolismo , Lamina Tipo A/metabolismo , Neuroblastoma/enzimología , Neuroblastoma/patología , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ontología de Genes , Ratones , Neuroblastoma/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Mapeo de Interacción de Proteínas , Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Regulación hacia Arriba/efectos de los fármacos
4.
PLoS One ; 11(3): e0151231, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963718

RESUMEN

Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.


Asunto(s)
Meiosis/fisiología , Microscopía Confocal/métodos , Lámina Nuclear/metabolismo , Espermatogénesis/fisiología , Animales , Núcleo Celular/metabolismo , Drosophila/genética , Drosophila melanogaster , Laminas/metabolismo , Masculino , Membrana Nuclear/metabolismo
5.
Oncotarget ; 6(32): 32821-40, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26439802

RESUMEN

Tumor-initiating cells constitute a population within a tumor mass that shares properties with normal stem cells and is considered responsible for therapy failure in many cancers. We have previously demonstrated that knockdown of the nuclear envelope component Lamin A/C in human neuroblastoma cells inhibits retinoic acid-mediated differentiation and results in a more aggressive phenotype. In addition, Lamin A/C is often lost in advanced tumors and changes in the nuclear envelope composition occur during tumor progression. Based on our previous data and considering that Lamin A/C is expressed in differentiated tissues, we hypothesize that the lack of Lamin A/C could predispose cells toward a stem-like phenotype, thus influencing the development of tumor-initiating cells in neuroblastoma. This paper demonstrates that knockdown of Lamin A/C triggers the development of a tumor-initiating cell population with self-renewing features in human neuroblastoma cells. We also demonstrates that the development of TICs is due to an increased expression of MYCN gene and that in neuroblastoma exists an inverse relationship between LMNA and MYCN expression.


Asunto(s)
Proliferación Celular , Lamina Tipo A/metabolismo , Células Madre Neoplásicas/metabolismo , Neuroblastoma/metabolismo , Animales , Línea Celular Tumoral , Autorrenovación de las Células , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Genotipo , Humanos , Lamina Tipo A/genética , Masculino , Ratones Desnudos , Proteína Proto-Oncogénica N-Myc , Células Madre Neoplásicas/patología , Neuroblastoma/genética , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Fenotipo , Interferencia de ARN , Transducción de Señal , Esferoides Celulares , Factores de Tiempo , Transfección , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA