Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Immunity ; 49(5): 929-942.e5, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30446385

RESUMEN

Commensal microbes colonize the gut epithelia of virtually all animals and provide several benefits to their hosts. Changes in commensal populations can lead to dysbiosis, which is associated with numerous pathologies and decreased lifespan. Peptidoglycan recognition proteins (PGRPs) are important regulators of the commensal microbiota and intestinal homeostasis. Here, we found that a null mutation in Drosophila PGRP-SD was associated with overgrowth of Lactobacillus plantarum in the fly gut and a shortened lifespan. L. plantarum-derived lactic acid triggered the activation of the intestinal NADPH oxidase Nox and the generation of reactive oxygen species (ROS). In turn, ROS production promoted intestinal damage, increased proliferation of intestinal stem cells, and dysplasia. Nox-mediated ROS production required lactate oxidation by the host intestinal lactate dehydrogenase, revealing a host-commensal metabolic crosstalk that is probably broadly conserved. Our findings outline a mechanism whereby host immune dysfunction leads to commensal dysbiosis that in turn promotes age-related pathologies.


Asunto(s)
Drosophila/fisiología , Ácido Láctico/metabolismo , Longevidad , Microbiota , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Disbiosis , Expresión Génica , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Mutación , NADPH Oxidasas/genética , Transducción de Señal , Simbiosis
2.
Proc Natl Acad Sci U S A ; 120(36): e2305649120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639605

RESUMEN

Resilience to short-term perturbations, like inflammation, is a fundamental feature of microbiota, yet the underlying mechanisms of microbiota resilience are incompletely understood. Here, we show that Lactiplantibacillus plantarum, a major Drosophila commensal, stably colonizes the fruit fly gut during infection and is resistant to Drosophila antimicrobial peptides (AMPs). By transposon screening, we identified L. plantarum mutants sensitive to AMPs. These mutants were impaired in peptidoglycan O-acetylation or teichoic acid D-alanylation, resulting in increased negative cell surface charge and higher affinity to cationic AMPs. AMP-sensitive mutants were cleared from the gut after infection and aging-induced gut inflammation in wild-type, but not in AMP-deficient flies, suggesting that resistance to host AMPs is essential for commensal resilience in an inflamed gut environment. Thus, our work reveals that in addition to the host immune tolerance to the microbiota, commensal-encoded resilience mechanisms are necessary to maintain the stable association between host and microbiota during inflammation.


Asunto(s)
Péptidos Antimicrobianos , Drosophila , Animales , Péptidos Catiónicos Antimicrobianos/genética , Envejecimiento , Inflamación
3.
Immunity ; 45(5): 1013-1023, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851910

RESUMEN

Activation of the innate immune response in Metazoans is initiated through the recognition of microbes by host pattern-recognition receptors. In Drosophila, diaminopimelic acid (DAP)-containing peptidoglycan from Gram-negative bacteria is detected by the transmembrane receptor PGRP-LC and by the intracellular receptor PGRP-LE. Here, we show that PGRP-SD acted upstream of PGRP-LC as an extracellular receptor to enhance peptidoglycan-mediated activation of Imd signaling. Consistent with this, PGRP-SD mutants exhibited impaired activation of the Imd pathway and increased susceptibility to DAP-type bacteria. PGRP-SD enhanced the localization of peptidoglycans to the cell surface and hence promoted signaling. Moreover, PGRP-SD antagonized the action of PGRP-LB, an extracellular negative regulator, to fine-tune the intensity of the immune response. These data reveal that Drosophila PGRP-SD functions as an extracellular receptor similar to mammalian CD14 and demonstrate that, comparable to lipopolysaccharide sensing in mammals, Drosophila relies on both intra- and extracellular receptors for the detection of bacteria.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Factores Reguladores Miogénicos/inmunología , Transducción de Señal/inmunología , Animales , Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Peptidoglicano/inmunología , Reacción en Cadena de la Polimerasa , Receptores de Reconocimiento de Patrones/inmunología
4.
PLoS Pathog ; 18(9): e1010825, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36084158

RESUMEN

Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing "travelers' diarrhea", urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species-P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifaciens transposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs.


Asunto(s)
Drosophila melanogaster , Providencia , Animales , Péptidos Antimicrobianos , Drosophila melanogaster/microbiología , Hemocitos , Humanos , Lipopolisacáridos , Oxígeno , Providencia/genética , Especies Reactivas de Oxígeno , Factores de Virulencia/genética
5.
PLoS Pathog ; 17(8): e1009846, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432851

RESUMEN

The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effector peptides that are secreted into the haemolymph. Technical difficulties prevented the investigation of these short effector genes until the recent advent of the CRISPR/CAS era. As a consequence, many putative immune effectors remain to be formally described, and exactly how each of these effectors contribute to survival is not well characterized. Here we describe a novel Drosophila antifungal peptide gene that we name Baramicin A. We show that BaraA encodes a precursor protein cleaved into multiple peptides via furin cleavage sites. BaraA is strongly immune-induced in the fat body downstream of the Toll pathway, but also exhibits expression in other tissues. Importantly, we show that flies lacking BaraA are viable but susceptible to the entomopathogenic fungus Beauveria bassiana. Consistent with BaraA being directly antimicrobial, overexpression of BaraA promotes resistance to fungi and the IM10-like peptides produced by BaraA synergistically inhibit growth of fungi in vitro when combined with a membrane-disrupting antifungal. Surprisingly, BaraA mutant males but not females display an erect wing phenotype upon infection. Here, we characterize a new antifungal immune effector downstream of Toll signalling, and show it is a key contributor to the Drosophila antimicrobial response.


Asunto(s)
Antifúngicos/farmacología , Beauveria/efectos de los fármacos , Proteínas de Drosophila/farmacología , Drosophila melanogaster/efectos de los fármacos , Micosis/tratamiento farmacológico , Péptidos/farmacología , Animales , Beauveria/crecimiento & desarrollo , Beauveria/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Femenino , Masculino , Micosis/inmunología , Micosis/microbiología
6.
Proc Natl Acad Sci U S A ; 117(13): 7317-7325, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32188787

RESUMEN

Iron sequestration is a recognized innate immune mechanism against invading pathogens mediated by iron-binding proteins called transferrins. Despite many studies on antimicrobial activity of transferrins in vitro, their specific in vivo functions are poorly understood. Here we use Drosophila melanogaster as an in vivo model to investigate the role of transferrins in host defense. We find that systemic infections with a variety of pathogens trigger a hypoferremic response in flies, namely, iron withdrawal from the hemolymph and accumulation in the fat body. Notably, this hypoferremia to infection requires Drosophila nuclear factor κB (NF-κB) immune pathways, Toll and Imd, revealing that these pathways also mediate nutritional immunity in flies. Next, we show that the iron transporter Tsf1 is induced by infections downstream of the Toll and Imd pathways and is necessary for iron relocation from the hemolymph to the fat body. Consistent with elevated iron levels in the hemolymph, Tsf1 mutants exhibited increased susceptibility to Pseudomonas bacteria and Mucorales fungi, which could be rescued by chemical chelation of iron. Furthermore, using siderophore-deficient Pseudomonas aeruginosa, we discover that the siderophore pyoverdine is necessary for pathogenesis in wild-type flies, but it becomes dispensable in Tsf1 mutants due to excessive iron present in the hemolymph of these flies. As such, our study reveals that, similar to mammals, Drosophila uses iron limitation as an immune defense mechanism mediated by conserved iron-transporting proteins transferrins. Our in vivo work, together with accumulating in vitro studies, supports the immune role of insect transferrins against infections via an iron withholding strategy.


Asunto(s)
Proteínas de Drosophila/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Animales , Proteínas de Drosophila/inmunología , Drosophila melanogaster , Hemolinfa/inmunología , Hemolinfa/metabolismo , Inmunidad Innata , Hierro/inmunología , FN-kappa B/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo , Transferrina/inmunología
7.
Appl Environ Microbiol ; 80(10): 3266-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24632254

RESUMEN

Bacillus thuringiensis has been widely used as a biopesticide, primarily for the control of insect pests, but some B. thuringiensis strains specifically target nematodes. However, nematicidal virulence factors of B. thuringiensis are poorly investigated. Here, we describe virulence factors of nematicidal B. thuringiensis DB27 using Caenorhabditis elegans as a model. We show that B. thuringiensis DB27 kills a number of free-living and animal-parasitic nematodes via intestinal damage. Its virulence factors are plasmid-encoded Cry protoxins, since plasmid-cured derivatives do not produce Cry proteins and are not toxic to nematodes. Whole-genome sequencing of B. thuringiensis DB27 revealed multiple potential nematicidal factors, including several Cry-like proteins encoded by different plasmids. Two of these proteins appear to be novel and show high similarity to Cry21Ba1. Named Cry21Fa1 and Cry21Ha1, they were expressed in Escherichia coli and fed to C. elegans, resulting in intoxication, intestinal damage, and death of nematodes. Interestingly, the effects of the two protoxins on C. elegans are synergistic (synergism factor, 1.8 to 2.5). Using purified proteins, we determined the 50% lethal concentrations (LC50s) for Cry21Fa1 and Cry21Ha1 to be 13.6 µg/ml and 23.9 µg/ml, respectively, which are comparable to the LC50 of nematicidal Cry5B. Finally, we found that signaling pathways which protect C. elegans against Cry5B toxin are also required for protection against Cry21Fa1. Thus, B. thuringiensis DB27 produces novel nematicidal protoxins Cry21Fa1 and Cry21Ha1 with synergistic action, which highlights the importance of naturally isolated strains as a source of novel toxins.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Endotoxinas/metabolismo , Endotoxinas/toxicidad , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidad , Nematodos/efectos de los fármacos , Animales , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/patogenicidad , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Sinergismo Farmacológico , Endotoxinas/genética , Proteínas Hemolisinas/genética , Datos de Secuencia Molecular , Nematodos/crecimiento & desarrollo , Virulencia
8.
mBio ; : e0093624, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940615

RESUMEN

Facultative endosymbiotic bacteria, such as Wolbachia and Spiroplasma species, are commonly found in association with insects and can dramatically alter their host physiology. Many endosymbionts are defensive and protect their hosts against parasites or pathogens. Despite the widespread nature of defensive insect symbioses and their importance for the ecology and evolution of insects, the mechanisms of symbiont-mediated host protection remain poorly characterized. Here, we utilized the fruit fly Drosophila melanogaster and its facultative endosymbiont Spiroplasma poulsonii to characterize the mechanisms underlying symbiont-mediated host protection against bacterial and fungal pathogens. Our results indicate a variable effect of S. poulsonii on infection outcome, with endosymbiont-harboring flies being more resistant to Rhyzopus oryzae, Staphylococcus aureus, and Providencia alcalifaciens but more sensitive or as sensitive as endosymbiont-free flies to the infections with Pseudomonas species. Further focusing on the protective effect, we identified Transferrin-mediated iron sequestration induced by Spiroplasma as being crucial for the defense against R. oryzae and P. alcalifaciens. In the case of S. aureus, enhanced melanization in Spiroplasma-harboring flies plays a major role in protection. Both iron sequestration and melanization induced by Spiroplasma require the host immune sensor protease Persephone, suggesting a role of proteases secreted by the symbiont in the activation of host defense reactions. Hence, our work reveals a broader defensive range of Spiroplasma than previously appreciated and adds nutritional immunity and melanization to the defensive arsenal of symbionts. IMPORTANCE: Defensive endosymbiotic bacteria conferring protection to their hosts against parasites and pathogens are widespread in insect populations. However, the mechanisms by which most symbionts confer protection are not fully understood. Here, we studied the mechanisms of protection against bacterial and fungal pathogens mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii. We demonstrate that besides the previously described protection against wasps and nematodes, Spiroplasma also confers increased resistance to pathogenic bacteria and fungi. We identified Spiroplasma-induced iron sequestration and melanization as key defense mechanisms. Our work broadens the known defense spectrum of Spiroplasma and reveals a previously unappreciated role of melanization and iron sequestration in endosymbiont-mediated host protection. We propose that the mechanisms we have identified here may be of broader significance and could apply to other endosymbionts, particularly to Wolbachia, and potentially explain their protective properties.

9.
Infect Immun ; 81(10): 3942-57, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918784

RESUMEN

Bacillus thuringiensis produces toxins that target invertebrates, including Caenorhabditis elegans. Virulence of Bacillus strains is often highly specific, such that B. thuringiensis strain DB27 is highly pathogenic to C. elegans but shows no virulence for another model nematode, Pristionchus pacificus. To uncover the underlying mechanisms of the differential responses of the two nematodes to B. thuringiensis DB27 and to reveal the C. elegans defense mechanisms against this pathogen, we conducted a genetic screen for C. elegans mutants resistant to B. thuringiensis DB27. Here, we describe a B. thuringiensis DB27-resistant C. elegans mutant that is identical to nasp-1, which encodes the C. elegans homolog of the nuclear-autoantigenic-sperm protein. Gene expression analysis indicated a substantial overlap between the genes downregulated in the nasp-1 mutant and targets of C. elegans dcr-1/Dicer, suggesting that dcr-1 is repressed in nasp-1 mutants, which was confirmed by quantitative PCR. Consistent with this, the nasp-1 mutant exhibits RNA interference (RNAi) deficiency and reduced longevity similar to those of a dcr-1 mutant. Building on these surprising findings, we further explored a potential role for dcr-1 in C. elegans innate immunity. We show that dcr-1 mutant alleles deficient in microRNA (miRNA) processing, but not those deficient only in RNAi, are resistant to B. thuringiensis DB27. Furthermore, dcr-1 overexpression rescues the nasp-1 mutant's resistance, suggesting that repression of dcr-1 determines the nasp-1 mutant's resistance. Additionally, we identified the collagen-encoding gene col-92 as one of the downstream effectors of nasp-1 that play an important role in resistance to DB27. Taken together, these results uncover a previously unknown role for DCR-1/Dicer in C. elegans antibacterial immunity that is largely associated with miRNA processing.


Asunto(s)
Bacillus thuringiensis/patogenicidad , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/inmunología , Ribonucleasa III/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma , Inmunidad Innata , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Ribonucleasa III/genética , Virulencia
10.
Curr Opin Insect Sci ; 49: 71-77, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952239

RESUMEN

Metal ions play essential roles in diverse physiological processes in insects, including immunity and interactions with microbes. Some, like iron, are essential nutrients and therefore are the subject of a tug-of-war between insects and microbes. Recent findings showed that the hypoferremic response mediated by Transferrin 1 is an essential defense mechanism against pathogens in insects. Transferrin 1 and the overall iron metabolism were also implicated in mediating interactions between insects and beneficial microbes. Other metals, like copper and zinc, can interfere with insect immune effectors, and either enhance (antimicrobial peptides) or reduce (reactive oxygen species) their activity. By covering recent advances in the field, this review emphasizes the importance of metals as essential mediators of insect-microbe interactions.


Asunto(s)
Metales , Zinc , Animales , Insectos/metabolismo , Hierro/metabolismo , Metales/metabolismo , Transferrinas , Zinc/metabolismo
11.
Front Aging ; 3: 909509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821860

RESUMEN

Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.

12.
Environ Microbiol ; 12(11): 3007-21, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20626457

RESUMEN

The main food source of free-living nematodes in the soil environment is bacteria, which can affect nematode development, fecundity and survival. In order to occupy a reliable source of bacterial food, some nematodes have formed specific relationships with an array of invertebrate hosts (where bacteria proliferate once the hosts dies), thus forming a tritrophic system of nematode, bacteria and insect or other invertebrates. We isolated 768 Bacillus strains from soil (from Germany and the UK), horse dung and dung beetles and fed them to the genetically tractable free-living nematodes Caenorhabditis elegans and Pristionchus pacificus to isolate nematocidal strains. While C. elegans is a bacteriovorous soil nematode, P. pacificus is an omnivorous worm that is often found in association with scarab beetles. We found 20 Bacillus strains (consisting of B. cereus, B. weihenstephanensis, B. mycoides and Bacillus sp.) that were pathogenic to C. elegans and P. pacificus causing 70% to 100% mortality over 5 days and significantly affect development and brood size. The most pathogenic strains are three B. cereus-like strains isolated from dung beetles, which exhibit extreme virulence to C. elegans in less than 24 h, but P. pacificus remains resistant. C. elegans Bre mutants were also highly susceptible to the B. cereus-like strains indicating that their toxins use a different virulence mechanism than B. thuringiensis Cry 5B toxin. Also, mutations in the daf-2/daf-16 insulin signaling pathway do not rescue survival. We profiled the toxin genes (bcet, nhe complex, hbl complex, pcpl, sph, cytK, piplc, hly2, hly3, entFM and entS) of these three B. cereus-like strains and showed presence of most toxin genes but absence of the hbl complex. Taken together, this study shows that the majority of naturally isolated Bacillus from soil, horse dung and Geotrupes beetles are benign to both C. elegans and P. pacificus. Among 20 pathogenic strains with distinct virulence patterns against the two nematodes, we selected three B. cereus-like strains to investigate resistance and susceptibility immune responses in nematodes.


Asunto(s)
Bacillus/aislamiento & purificación , Bacillus/patogenicidad , Toxinas Bacterianas/toxicidad , Caenorhabditis elegans/microbiología , Nematodos/microbiología , Animales , Antibiosis , Beauveria/crecimiento & desarrollo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Escarabajos/microbiología , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Mutación , Nematodos/genética , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Microbiología del Suelo , Especificidad de la Especie , Virulencia
13.
Cell Rep ; 27(4): 1050-1061.e3, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018123

RESUMEN

The melanization response is an important defense mechanism in arthropods. This reaction is mediated by phenoloxidases (POs), which are activated by complex extracellular serine protease (SP) cascades. Here, we investigate the role of SPs in the melanization response using compound mutants in D. melanogaster and discover phenotypes previously concealed in single-mutant analyses. We find that two SPs, Hayan and Sp7, activate the melanization response in different manners: Hayan is required for blackening wound sites, whereas Sp7 regulates an alternate melanization reaction responsible for the clearance of Staphylococcus aureus. We present evidence that Sp7 is regulated by SPs activating the Toll NF-κB pathway, namely ModSP and Grass. Additionally, we reveal a role for the combined action of Hayan and Psh in propagating Toll signaling downstream of pattern recognition receptors activating either Toll signaling or the melanization response.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Melaninas/metabolismo , Serina Proteasas/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Duplicación de Gen , Interacciones Huésped-Patógeno , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/fisiología , Serina Proteasas/genética , Serina Proteasas/metabolismo , Staphylococcus aureus/fisiología , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/fisiología
14.
Toxins (Basel) ; 6(7): 2050-63, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25025708

RESUMEN

Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thuringiensis 4A4 identified Cry21Ha, Cry1Ba, Vip1/Vip2 and ß-exotoxin as potential nematicidal factors. Only Cry21Ha showed toxicity to C. elegans, while neither Cry nor Vip toxins were active against P. pacificus, when expressed in E. coli. Purified crystals also failed to intoxicate P. pacificus, while autoclaved spore-crystal mixture of B. thuringiensis 4A4 retained toxicity, suggesting that primary ß-exotoxin is responsible for P. pacificus killing. In support of this, we found that a ß-exotoxin-deficient variant of B. thuringiensis 4A4, generated by plasmid curing lost virulence to the nematodes. Thus, using two model nematodes we revealed virulence factors of the nematicidal strain B. thuringiensis 4A4 and showed the multifactorial nature of its virulence.


Asunto(s)
Antinematodos/toxicidad , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Nematodos/efectos de los fármacos , Factores de Virulencia/toxicidad , Animales , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Quimiotaxis/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/patología , Nematodos/fisiología , Factores de Virulencia/genética
15.
Curr Biol ; 24(22): 2720-7, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25448001

RESUMEN

Studies on Caenorhabditis elegans have provided detailed insight into host-pathogen interactions. Usually, the E. coli strain OP50 is used as food source for laboratory studies, but recent work has shown that a variety of bacteria have dramatic effects on C. elegans physiology, including immune responses. However, the mechanisms by which different bacteria impact worm resistance to pathogens are poorly understood. Although pathogen-specific immune priming is often discussed as a mechanism underlying such observations, interspecies microbial antagonism might represent an alternative mode of action. Here, we use several natural Bacillus strains to study their effects on nematode survival upon pathogen challenge. We show that B. subtilis GS67 persists in the C. elegans intestine and increases worm resistance to Gram-positive pathogens, suggesting that direct inhibition of pathogens might be the primary protective mechanism. Indeed, chemical and genetic analyses identified the lipopeptide fengycin as the major inhibitory molecule produced by B. subtilis GS67. Specifically, a fengycin-defective mutant of B. subtilis GS67 lost inhibitory activity against pathogens and was unable to protect C. elegans from infections. Furthermore, we found that purified fengycin cures infected worms in a dose-dependent manner, indicating that it acts as an antibiotic. Our results reveal a molecular mechanism for commensal-mediated C. elegans protection and highlight the importance of interspecies microbial antagonism for the outcome of animal-pathogen interactions. Furthermore, our work strengthens C. elegans as an in vivo model to reveal protective mechanisms of commensal bacteria, including those relevant to mammalian hosts.


Asunto(s)
Bacillus subtilis/fisiología , Caenorhabditis elegans/microbiología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Animales , Bacillus subtilis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Bacterias Grampositivas/patogenicidad , Lipopéptidos
16.
Genome Announc ; 2(1)2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24558243

RESUMEN

Here, we report the genome sequence of nematicidal Bacillus thuringiensis DB27, which provides first insights into the genetic determinants of its pathogenicity to nematodes. The genome consists of a 5.7-Mb chromosome and seven plasmids, three of which contain genes encoding nematicidal proteins.

17.
PLoS One ; 7(9): e44255, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028509

RESUMEN

The evolution of genetic mechanisms used to combat bacterial infections is critical for the survival of animals and plants, yet how these genes evolved to produce a robust defense system is poorly understood. Studies of the nematode Caenorhabditis elegans have uncovered a plethora of genetic regulators and effectors responsible for surviving pathogens. However, comparative studies utilizing other free-living nematodes and therefore providing an insight into the evolution of innate immunity have been lacking. Here, we take a systems biology approach and use whole genome microarrays to profile the transcriptional response of C. elegans and the necromenic nematode Pristionchus pacificus after exposure to the four different pathogens Serratia marcescens, Xenorhabdus nematophila, Staphylococcus aureus and Bacillus thuringiensis DB27. C. elegans is susceptible to all four pathogens whilst P. pacificus is only susceptible to S. marcescens and X. nematophila. We show an unexpected level of specificity in host responses to distinct pathogens within and across species, revealing an enormous complexity of effectors of innate immunity. Functional domains enriched in the transcriptomes on different pathogens are similar within a nematode species but different across them, suggesting differences in pathogen sensing and response networks. We find translation inhibition to be a potentially conserved response to gram-negative pathogens in both the nematodes. Further computational analysis indicates that both nematodes when fed on pathogens up-regulate genes known to be involved in other stress responses like heat shock, oxidative and osmotic stress, and genes regulated by DAF-16/FOXO and TGF-beta pathways. This study presents a platform for comparative systems analysis of two nematode model species, and a catalog of genes involved in the evolution of nematode immunity and identifies both pathogen specific and pan-pathogen responses. We discuss the potential effects of ecology on evolution of downstream effectors and upstream regulators on evolution of nematode innate immunity.


Asunto(s)
Caenorhabditis elegans/inmunología , Inmunidad Innata , Nematodos/inmunología , Animales , Evolución Biológica , Biotransformación , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/metabolismo , Análisis por Conglomerados , Factores de Transcripción Forkhead , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Bacterias Gramnegativas/inmunología , Bacterias Grampositivas/inmunología , Inmunidad Innata/genética , Metabolismo de los Lípidos , Sistema de Señalización de MAP Quinasas , Nematodos/genética , Nematodos/metabolismo , Nematodos/microbiología , Biosíntesis de Proteínas , Factores de Transcripción/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA