Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
MMWR Morb Mortal Wkly Rep ; 69(16): 489-495, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32324719

RESUMEN

Circulating vaccine-derived polioviruses (cVDPVs) can emerge in areas with low poliovirus immunity and cause outbreaks* of paralytic polio (1-5). Among the three types of wild poliovirus, type 2 was declared eradicated in 2015 (1,2). The use of trivalent oral poliovirus vaccine (tOPV; types 1, 2, and 3 Sabin strains) ceased in April 2016 via a 1-month-long, global synchronized switch to bivalent OPV (bOPV; types 1 and 3 Sabin strains) in immunization activities (1-4). Monovalent type 2 OPV (mOPV2; type 2 Sabin strain) is available for cVDPV type 2 (cVDPV2) outbreak response immunization (1-5). The number and geographic breadth of post-switch cVDPV2 outbreaks have exceeded forecasts that trended toward zero outbreaks 4 years after the switch and assumed rapid and effective control of any that occurred (4). New cVDPV2 outbreaks have been seeded by mOPV2 use, by both suboptimal mOPV2 coverage within response zones and recently mOPV2-vaccinated children or contacts traveling outside of response zones, where children born after the global switch are fully susceptible to poliovirus type 2 transmission (2-4). In addition, new emergences can develop by inadvertent exposure to Sabin OPV2-containing vaccine (i.e., residual response mOPV2 or tOPV) (4). This report updates the January 2018-June 2019 report with information on global cVDPV outbreaks during July 2019-February 2020 (as of March 25, 2020)† (2). Among 33 cVDPV outbreaks reported during July 2019-February 2020, 31 (94%) were cVDPV2; 18 (58%) of these followed new emergences. In mid-2020, the Global Polio Eradication Initiative (GPEI) plans to introduce a genetically stabilized, novel OPV type 2 (nOPV2) that has a lower risk for generating VDPV2 than does Sabin mOPV2; if nOPV2 is successful in limiting new VDPV2 emergences, GPEI foresees the replacement of Sabin mOPV2 with nOPV2 for cVDPV2 outbreak responses during 2021 (2,4,6).


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Salud Global/estadística & datos numéricos , Poliomielitis/epidemiología , Vacuna Antipolio Oral/efectos adversos , Poliovirus/aislamiento & purificación , Humanos , Poliomielitis/etiología , Poliomielitis/prevención & control , Poliovirus/clasificación , Vacuna Antipolio Oral/administración & dosificación , Serotipificación
2.
MMWR Morb Mortal Wkly Rep ; 69(20): 623-629, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32437342

RESUMEN

Since the Global Polio Eradication Initiative (GPEI) was launched in 1988, the number of polio cases worldwide has declined approximately 99.99%; only two countries (Afghanistan and Pakistan) have never interrupted wild poliovirus (WPV) transmission (1). The primary means of detecting poliovirus circulation is through surveillance for acute flaccid paralysis (AFP) among children aged <15 years with testing of stool specimens for WPV and vaccine-derived polioviruses (VDPVs) (genetically reverted strains of the vaccine virus that regain neurovirulence) in World Health Organization (WHO)-accredited laboratories (2,3). In many locations, AFP surveillance is supplemented by environmental surveillance, the regular collection and testing of sewage to provide awareness of the extent and duration of poliovirus circulation (3). This report presents 2018-2019 poliovirus surveillance data, focusing on 40 priority countries* with WPV or VDPV outbreaks or at high risk for importation because of their proximity to a country with an outbreak. The number of priority countries rose from 31 in 2018 to 40 in 2019 because of a substantial increase in the number of VDPV outbreaks† (2,4). In areas with low poliovirus immunity, VDPVs can circulate in the community and cause outbreaks of paralysis; these are known as circulating vaccine derived polioviruses (cVDPVs) (4). In 2019, only 25 (63%) of the 40 designated priority countries met AFP surveillance indicators nationally; subnational surveillance performance varied widely and indicated focal weaknesses. High quality, sensitive surveillance is important to ensure timely detection and response to cVDPV and WPV transmission.


Asunto(s)
Erradicación de la Enfermedad , Salud Global/estadística & datos numéricos , Poliomielitis/prevención & control , Vigilancia de la Población , Monitoreo del Ambiente , Humanos , Laboratorios , Parálisis/epidemiología , Poliomielitis/epidemiología , Poliovirus/aislamiento & purificación
3.
J Virol ; 92(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444940

RESUMEN

We followed the dynamics of capsid amino acid replacement among 403 Nigerian outbreak isolates of type 2 circulating vaccine-derived poliovirus (cVDPV2) from 2005 through 2011. Four different functional domains were analyzed: (i) neutralizing antigenic (NAg) sites, (ii) residues binding the poliovirus receptor (PVR), (iii) VP1 residues 1 to 32, and (iv) the capsid structural core. Amino acid replacements mapped to 37 of 43 positions across all 4 NAg sites; the most variable and polymorphic residues were in NAg sites 2 and 3b. The most divergent of the 120 NAg variants had no more than 5 replacements in all NAg sites and were still neutralized at titers similar to those of Sabin 2. PVR-binding residues were less variable (25 different variants; 0 to 2 replacements per isolate; 30/44 invariant positions), with the most variable residues also forming parts of NAg sites 2 and 3a. Residues 1 to 32 of VP1 were highly variable (133 different variants; 0 to 6 replacements per isolate; 5/32 invariant positions), with residues 1 to 18 predicted to form a well-conserved amphipathic helix. Replacement events were dated by mapping them onto the branches of time-scaled phylogenies. Rates of amino acid replacement varied widely across positions and followed no simple substitution model. Replacements in the structural core were the most conservative and were fixed at an overall rate ∼20-fold lower than the rates for the NAg sites and VP1 1 to 32 and ∼5-fold lower than the rate for the PVR-binding sites. Only VP1 143-Ile, a non-NAg site surface residue and known attenuation site, appeared to be under strong negative selection.IMPORTANCE The high rate of poliovirus evolution is offset by strong selection against amino acid replacement at most positions of the capsid. Consequently, poliovirus vaccines developed from strains isolated decades ago have been used worldwide to bring wild polioviruses almost to extinction. The apparent antigenic stability of poliovirus obscures a dynamic of continuous change within the neutralizing antigenic (NAg) sites. During 7 years of a large outbreak in Nigeria, the circulating type 2 vaccine-derived polioviruses generated 120 different NAg site variants via multiple independent pathways. Nonetheless, overall antigenic evolution was constrained, as no isolate had fixed more than 5 amino acid differences from the Sabin 2 NAg sites, and the most divergent isolates were efficiently neutralized by human immune sera. Evolution elsewhere in the capsid was also constrained. Amino acids binding the poliovirus receptor were strongly conserved, and extensive variation in the VP1 amino terminus still conserved a predicted amphipathic helix.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Cápside/inmunología , Brotes de Enfermedades , Poliomielitis/inmunología , Poliovirus/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Proteínas de la Cápside/genética , Preescolar , Epítopos/genética , Epítopos/inmunología , Humanos , Lactante , Filogenia , Poliomielitis/virología
4.
MMWR Morb Mortal Wkly Rep ; 68(45): 1024-1028, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31725706

RESUMEN

Certification of global eradication of indigenous wild poliovirus type 2 occurred in 2015 and of type 3 in 2019. Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988 and broad use of live, attenuated oral poliovirus vaccine (OPV), the number of wild poliovirus cases has declined >99.99% (1). Genetically divergent vaccine-derived poliovirus* (VDPV) strains can emerge during vaccine use and spread in underimmunized populations, becoming circulating VDPV (cVDPV) strains, and resulting in outbreaks of paralytic poliomyelitis.† In April 2016, all oral polio vaccination switched from trivalent OPV (tOPV; containing vaccine virus types 1, 2, and 3) to bivalent OPV (bOPV; containing types 1 and 3) (2). Monovalent type 2 OPV (mOPV2) is used in response campaigns to control type 2 cVDPV (cVDPV2) outbreaks. This report presents data on cVDPV outbreaks detected during January 2018-June 2019 (as of September 30, 2019). Compared with January 2017-June 2018 (3), the number of reported cVDPV outbreaks more than tripled, from nine to 29; 25 (86%) of the outbreaks were caused by cVDPV2. The increase in the number of outbreaks in 2019 resulted from VDPV2 both inside and outside of mOPV2 response areas. GPEI is planning future use of a novel type 2 OPV, stabilized to decrease the likelihood of reversion to neurovirulence. However, all countries must maintain high population immunity to decrease the risk for cVDPV emergence. Cessation of all OPV use after certification of polio eradication will eliminate the risk for VDPV emergence.


Asunto(s)
Brotes de Enfermedades , Salud Global/estadística & datos numéricos , Poliomielitis/epidemiología , Vacuna Antipolio Oral/efectos adversos , Poliovirus/aislamiento & purificación , Humanos , Poliomielitis/etiología , Poliomielitis/prevención & control , Poliovirus/clasificación , Vacuna Antipolio Oral/administración & dosificación , Serotipificación
5.
MMWR Morb Mortal Wkly Rep ; 67(42): 1189-1194, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30359342

RESUMEN

Since the Global Polio Eradication Initiative was launched in 1988 (1), the number of polio cases worldwide has declined by >99.99%. Among the three wild poliovirus (WPV) serotypes, only type 1 (WPV1) has been detected since 2012. This decline is attributable primarily to use of the live, attenuated oral poliovirus vaccine (OPV) in national routine immunization schedules and mass vaccination campaigns. The success and safety record of OPV use is offset by the rare emergence of genetically divergent vaccine-derived polioviruses (VDPVs), whose genetic drift from the parental OPV strains indicates prolonged replication or circulation (2). Circulating VDPVs (cVDPVs) can emerge in areas with low immunization coverage and can cause outbreaks of paralytic polio. In addition, immunodeficiency-associated VDPVs (iVDPVs) can emerge in persons with primary immunodeficiencies and can replicate and be excreted for years. This report presents data on VDPVs detected during January 2017-June 2018 and updates previous VDPV summaries (3). During this reporting period, new cVDPV outbreaks were detected in five countries. Fourteen newly identified persons in nine countries were found to excrete iVDPVs. Ambiguous VDPVs (aVDPVs), isolates that cannot be classified definitively, were found among immunocompetent persons and environmental samples in seven countries.


Asunto(s)
Brotes de Enfermedades , Salud Global/estadística & datos numéricos , Poliomielitis/epidemiología , Vacuna Antipolio Oral/efectos adversos , Poliovirus/aislamiento & purificación , Humanos , Poliomielitis/etiología , Poliomielitis/prevención & control , Poliovirus/clasificación , Poliovirus/genética , Vacuna Antipolio Oral/administración & dosificación , Serotipificación
6.
MMWR Morb Mortal Wkly Rep ; 67(10): 300-305, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29543791

RESUMEN

The last confirmed wild poliovirus (WPV) case in Democratic Republic of the Congo (DRC) had paralysis onset in December 2011 (1). DRC has had cases of vaccine-derived polioviruses (VDPVs) documented since 2004 (Table 1) (1-6). After an outbreak of 30 circulating VDPV type 2 (cVDPV2) cases during 2011-2012, only five VDPV2 cases were reported during 2013-2016 (Table 1) (1-6). VDPVs can emerge from oral poliovirus vaccine (OPV types 1, 2, or 3; Sabin) polioviruses that have genetically mutated resulting in reversion to neurovirulence. This process occurs during extensive person-to-person transmission in populations with low immunity or after extended replication in the intestines of immune-deficient persons following vaccination (1-6). During 2017 (as of March 8, 2018), 25 VDPV cases were reported in three provinces in DRC: in Tanganyika province, an emergence with one VDPV2 case (pending final classification) in Kabalo health zone and an emergence with one ambiguous VDPV type 1 (aVDPV1) case in Ankoro health zone; in Maniema province, an emergence with two cVDPV2 cases; and in Haut Lomami province, an emergence with 20 cVDPV2 cases that originated in Haut Lomami province and later spread to Tanganyika province (hereafter referred to as the Haut Lomami outbreak area) and an emergence with one aVDPV type 2 (aVDPV2) case in Lwamba health zone (Table 1) (Figure) (6). Outbreak response supplementary immunization activities (SIAs) were conducted during June-December 2017 (Table 2) (6). Because of limitations in surveillance and suboptimal SIA quality and geographic scope, cVDPV2 circulation is likely continuing in 2018, requiring additional SIAs. DRC health officials and Global Polio Eradication Initiative (GPEI) partners are increasing human and financial resources to improve all aspects of outbreak response.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Poliomielitis/epidemiología , Vacuna Antipolio Oral/efectos adversos , República Democrática del Congo/epidemiología , Humanos
7.
MMWR Morb Mortal Wkly Rep ; 67(24): 690-694, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29927908

RESUMEN

Since the 1988 inception of the Global Polio Eradication Initiative (GPEI), progress toward interruption of wild poliovirus (WPV) transmission has occurred mostly through extensive use of oral poliovirus vaccine (OPV) in mass vaccination campaigns and through routine immunization services (1,2). However, because OPV contains live, attenuated virus, it carries the rare risk for reversion to neurovirulence. In areas with very low OPV coverage, prolonged transmission of vaccine-associated viruses can lead to the emergence of vaccine-derived polioviruses (VDPVs), which can cause outbreaks of paralytic poliomyelitis. Although WPV type 2 has not been detected since 1999, and was declared eradicated in 2015,* most VDPV outbreaks have been attributable to VDPV serotype 2 (VDPV2) (3,4). After the synchronized global switch from trivalent OPV (tOPV) (containing vaccine virus types 1, 2, and 3) to bivalent OPV (bOPV) (types 1 and 3) in April 2016 (5), GPEI regards any VDPV2 emergence as a public health emergency (6,7). During May-June 2017, VDPV2 was isolated from stool specimens from two children with acute flaccid paralysis (AFP) in Deir-ez-Zor governorate, Syria. The first isolate differed from Sabin vaccine virus by 22 nucleotides in the VP1 coding region (903 nucleotides). Genetic sequence analysis linked the two cases, confirming an outbreak of circulating VDPV2 (cVDPV2). Poliovirus surveillance activities were intensified, and three rounds of vaccination campaigns, aimed at children aged <5 years, were conducted using monovalent OPV type 2 (mOPV2). During the outbreak, 74 cVDPV2 cases were identified; the most recent occurred in September 2017. Evidence indicates that enhanced surveillance measures coupled with vaccination activities using mOPV2 have interrupted cVDPV2 transmission in Syria.


Asunto(s)
Brotes de Enfermedades/prevención & control , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Vacuna Antipolio Oral/efectos adversos , Preescolar , Femenino , Humanos , Lactante , Masculino , Poliomielitis/virología , Siria/epidemiología , Cobertura de Vacunación/estadística & datos numéricos
8.
J Clin Microbiol ; 55(2): 606-615, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27927929

RESUMEN

The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% ± 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Poliovirus/clasificación , Poliovirus/genética , Manejo de Especímenes/métodos , Humanos , Epidemiología Molecular/métodos , Proyectos Piloto
9.
J Virol ; 90(1): 317-31, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468545

RESUMEN

UNLABELLED: To assess the dynamics of genetic reversion of live poliovirus vaccine in humans, we studied molecular evolution in Sabin-like poliovirus isolates from Nigerian acute flaccid paralysis cases obtained from routine surveillance. We employed a novel modeling approach to infer substitution and recombination rates from whole-genome sequences and information about poliovirus infection dynamics and the individual vaccination history. We confirmed observations from a recent vaccine trial that VP1 substitution rates are increased for Sabin-like isolates relative to the rate for the wild type due to increased nonsynonymous substitution rates. We also inferred substitution rates for attenuating nucleotides and confirmed that reversion can occur in days to weeks after vaccination. We combine our observations for Sabin-like virus evolution with the molecular clock for VP1 of circulating wild-type strains to infer that the mean time from the initiating vaccine dose to the earliest detection of circulating vaccine-derived poliovirus (cVDPV) is 300 days for Sabin-like virus type 1, 210 days for Sabin-like virus type 2, and 390 days for Sabin-like virus type 3. Phylogenetic relationships indicated transient local transmission of Sabin-like virus type 3 and, possibly, Sabin-like virus type 1 during periods of low wild polio incidence. Comparison of Sabin-like virus recombinants with known Nigerian vaccine-derived poliovirus recombinants shows that while recombination with non-Sabin enteroviruses is associated with cVDPV, the recombination rates are similar for Sabin isolate-Sabin isolate and Sabin isolate-non-Sabin enterovirus recombination after accounting for the time from dosing to the time of detection. Our study provides a comprehensive picture of the evolutionary dynamics of the oral polio vaccine in the field. IMPORTANCE: The global polio eradication effort has completed its 26th year. Despite success in eliminating wild poliovirus from most of the world, polio persists in populations where logistical, social, and political factors have not allowed vaccination programs of sustained high quality. One issue of critical importance is eliminating circulating vaccine-derived polioviruses (cVDPVs) that have properties indistinguishable from those of wild poliovirus and can cause paralytic disease. cVDPV emerges due to the genetic instability of the Sabin viruses used in the oral polio vaccine (OPV) in populations that have low levels of immunity to poliovirus. However, the dynamics responsible are incompletely understood because it has historically been difficult to gather and interpret data about evolution of the Sabin viruses used in OPV in regions where cVDPV has occurred. This study is the first to combine whole-genome sequencing of poliovirus isolates collected during routine surveillance with knowledge about the intrahost dynamics of poliovirus to provide quantitative insight into polio vaccine evolution in the field.


Asunto(s)
Proteínas de la Cápside/genética , Mutación Puntual , Poliomielitis/prevención & control , Poliomielitis/virología , Vacuna Antipolio Oral/efectos adversos , Poliovirus/genética , Poliovirus/aislamiento & purificación , Niño , Preescolar , Evolución Molecular , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Epidemiología Molecular , Tasa de Mutación , Nigeria/epidemiología , Filogenia , Poliomielitis/epidemiología , Vacuna Antipolio Oral/administración & dosificación , ARN Viral/genética , Homología de Secuencia , Factores de Tiempo , Virulencia
10.
MMWR Morb Mortal Wkly Rep ; 66(43): 1185-1191, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29095803

RESUMEN

In 1988, the World Health Assembly launched the Global Polio Eradication Initiative (GPEI) (1). Among the three wild poliovirus (WPV) serotypes, only type 1 (WPV1) has been detected since 2012. Since 2014, detection of WPV1 has been limited to three countries, with 37 cases in 2016 and 11 cases in 2017 as of September 27. The >99.99% decline worldwide in polio cases since the launch of the GPEI is attributable to the extensive use of the live, attenuated oral poliovirus vaccine (OPV) in mass vaccination campaigns and comprehensive national routine immunization programs. Despite its well-established safety record, OPV use can be associated with rare emergence of genetically divergent vaccine-derived polioviruses (VDPVs) whose genetic drift from the parental OPV strains indicates prolonged replication or circulation (2). VDPVs can also emerge among persons with primary immunodeficiencies (PIDs). Immunodeficiency-associated VDPVs (iVDPVs) can replicate for years in some persons with PIDs. In addition, circulating vaccine-derived polioviruses (cVDPVs) can emerge very rarely among immunologically normal vaccine recipients and their contacts in areas with inadequate OPV coverage and can cause outbreaks of paralytic polio. This report updates previous summaries regarding VDPVs (3). During January 2016-June 2017, new cVDPV outbreaks were identified, including two in the Democratic Republic of the Congo (DRC) (eight cases), and another in Syria (35 cases), whereas the circulation of cVDPV type 2 (cVDPV2) in Nigeria resulted in cVDPV2 detection linked to a previous emergence. The last confirmed case from the 2015-2016 cVDPV type 1 (cVDPV1) outbreak in Laos occurred in January 2016. Fourteen newly identified persons in 10 countries were found to excrete iVDPVs, and three previously reported patients in the United Kingdom and Iran (3) were still excreting type 2 iVDPV (iVDPV2) during the reporting period. Ambiguous VDPVs (aVDPVs), isolates that cannot be classified definitively, were found among immunocompetent persons and environmental samples in 10 countries. Cessation of all OPV use after certification of polio eradication will eliminate the risk for new VDPV infections.


Asunto(s)
Brotes de Enfermedades , Salud Global/estadística & datos numéricos , Poliomielitis/epidemiología , Vacuna Antipolio Oral/efectos adversos , Poliovirus/aislamiento & purificación , Niño , Preescolar , Femenino , Humanos , Huésped Inmunocomprometido , Lactante , Masculino , Poliomielitis/etiología , Poliomielitis/prevención & control , Poliovirus/clasificación , Poliovirus/genética , Vacuna Antipolio Oral/administración & dosificación , Serotipificación , Aguas del Alcantarillado/virología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos
11.
MMWR Morb Mortal Wkly Rep ; 65(30): 763-9, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27491079

RESUMEN

In 1988, the World Health Assembly resolved to eradicate poliomyelitis worldwide (1). One of the main tools used in polio eradication efforts has been the live, attenuated, oral poliovirus vaccine (OPV) (2), an inexpensive vaccine easily administered by trained volunteers. OPV might require several doses to induce immunity, but provides long-term protection against paralytic disease. Through effective use of OPV, the Global Polio Eradication Initiative (GPEI) has brought wild polioviruses to the threshold of eradication (1). However, OPV use, particularly in areas with low routine vaccination coverage, is associated with the emergence of genetically divergent vaccine-derived polioviruses (VDPVs) whose genetic drift from the parental OPV strains indicates prolonged replication or circulation (3). VDPVs can emerge among immunologically normal vaccine recipients and their contacts as well as among persons with primary immunodeficiencies (PIDs). Immunodeficiency-associated VDPVs (iVDPVs) can replicate for years in some persons with PIDs. In addition, circulating vaccine-derived polioviruses (cVDPVs) (3) can emerge in areas with low OPV coverage and can cause outbreaks of paralytic polio. This report updates previous summaries regarding VDPVs (4).


Asunto(s)
Brotes de Enfermedades , Salud Global/estadística & datos numéricos , Poliomielitis/epidemiología , Vacuna Antipolio Oral/efectos adversos , Adolescente , Niño , Preescolar , Femenino , Humanos , Huésped Inmunocomprometido , Lactante , Masculino , Poliomielitis/etiología , Poliomielitis/prevención & control , Poliovirus/clasificación , Poliovirus/aislamiento & purificación , Vacuna Antipolio Oral/administración & dosificación , Serotipificación , Aguas del Alcantarillado/virología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos
12.
MMWR Morb Mortal Wkly Rep ; 65(30): 770-3, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27490081

RESUMEN

In September 2015, more than 1 year after reporting its last wild poliovirus (WPV) case in July 2014 (1), Nigeria was removed from the list of countries with endemic poliovirus transmission,* leaving Afghanistan and Pakistan as the only remaining countries with endemic WPV. However, on April 29, 2016, a laboratory-confirmed, circulating vaccine-derived poliovirus type 2 (cVDPV2) isolate was reported from an environmental sample collected in March from a sewage effluent site in Maiduguri Municipal Council, Borno State, a security-compromised area in northeastern Nigeria. VDPVs are genetic variants of the vaccine viruses with the potential to cause paralysis and can circulate in areas with low population immunity. The Nigeria National Polio Emergency Operations Center initiated emergency response activities, including administration of at least 2 doses of oral poliovirus vaccine (OPV) to all children aged <5 years through mass campaigns; retroactive searches for missed cases of acute flaccid paralysis (AFP), and enhanced environmental surveillance. Approximately 1 million children were vaccinated in the first OPV round. Thirteen previously unreported AFP cases were identified. Enhanced environmental surveillance has not resulted in detection of additional VDPV isolates. The detection of persistent circulation of VDPV2 in Borno State highlights the low population immunity, surveillance limitations, and risk for international spread of cVDPVs associated with insurgency-related insecurity. Increasing vaccination coverage with additional targeted supplemental immunization activities and reestablishment of effective routine immunization activities in newly secured and difficult-to-reach areas in Borno is urgently needed.


Asunto(s)
Microbiología Ambiental , Poliomielitis/transmisión , Vacuna Antipolio Oral/efectos adversos , Poliovirus/aislamiento & purificación , Aguas del Alcantarillado/virología , Preescolar , Brotes de Enfermedades/prevención & control , Humanos , Lactante , Vacunación Masiva , Nigeria/epidemiología , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Poliovirus/clasificación , Vacuna Antipolio Oral/administración & dosificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos
13.
J Virol ; 87(9): 4907-22, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23408630

RESUMEN

Since 2005, a large poliomyelitis outbreak associated with type 2 circulating vaccine-derived poliovirus (cVDPV2) has occurred in northern Nigeria, where immunization coverage with trivalent oral poliovirus vaccine (tOPV) has been low. Phylogenetic analysis of P1/capsid region sequences of isolates from each of the 403 cases reported in 2005 to 2011 resolved the outbreak into 23 independent type 2 vaccine-derived poliovirus (VDPV2) emergences, at least 7 of which established circulating lineage groups. Virus from one emergence (lineage group 2005-8; 361 isolates) was estimated to have circulated for over 6 years. The population of the major cVDPV2 lineage group expanded rapidly in early 2009, fell sharply after two tOPV rounds in mid-2009, and gradually expanded again through 2011. The two major determinants of attenuation of the Sabin 2 oral poliovirus vaccine strain (A481 in the 5'-untranslated region [5'-UTR] and VP1-Ile143) had been replaced in all VDPV2 isolates; most A481 5'-UTR replacements occurred by recombination with other enteroviruses. cVDPV2 isolates representing different lineage groups had biological properties indistinguishable from those of wild polioviruses, including efficient growth in neuron-derived HEK293 cells, the capacity to cause paralytic disease in both humans and PVR-Tg21 transgenic mice, loss of the temperature-sensitive phenotype, and the capacity for sustained person-to-person transmission. We estimate from the poliomyelitis case count and the paralytic case-to-infection ratio for type 2 wild poliovirus infections that ∼700,000 cVDPV2 infections have occurred during the outbreak. The detection of multiple concurrent cVDPV2 outbreaks in northern Nigeria highlights the risks of cVDPV emergence accompanying tOPV use at low rates of coverage in developing countries.


Asunto(s)
Poliomielitis/epidemiología , Vacuna Antipolio Oral/efectos adversos , Vacunas contra Poliovirus/efectos adversos , Poliovirus/fisiología , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Brotes de Enfermedades , Femenino , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Nigeria/epidemiología , Filogenia , Poliomielitis/virología , Poliovirus/clasificación , Poliovirus/genética , Poliovirus/inmunología , Vacuna Antipolio Oral/administración & dosificación , Vacunas contra Poliovirus/genética , Vacunas contra Poliovirus/inmunología
14.
Vaccine ; 41 Suppl 1: A48-A57, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36803869

RESUMEN

After six years without any detection of poliomyelitis cases, Angola reported a case of circulating vaccine-derived poliovirus type 2 (cVDPV2) with paralysis onset date of 27 March 2019. Ultimately, 141 cVDPV2 polio cases were reported in all 18 provinces in 2019-2020, with particularly large hotspots in the south-central provinces of Luanda, Cuanza Sul, and Huambo. Most cases were reported from August to December 2019, with a peak of 15 cases in October 2019. These cases were classified into five distinct genetic emergences (emergence groups) and have ties with cases identified in 2017-2018 in the Democratic Republic of Congo. From June 2019 to July 2020, the Angola Ministry of Health and partners conducted 30 supplementary immunization activity (SIA) rounds as part of 10 campaign groups, using monovalent OPV type 2 (mOPV2). There were Sabin 2 vaccine strain detections in the environmental (sewage) samples taken after mOPV2 SIAs in each province. Following the initial response, additional cVDPV2 polio cases occurred in other provinces. However, the national surveillance system did not detect any new cVDPV2 polio cases after 9 February 2020. While reporting subpar indicator performance in epidemiological surveillance, the laboratory and environmental data as of May 2021 strongly suggest that Angola successfully interrupted transmission of cVDPV2 early in 2020. Additionally, the COVID-19 pandemic did not allow a formal Outbreak Response Assessment (OBRA). Improving the sensitivity of the surveillance system and the completeness of AFP case investigations will be vital to promptly detect and interrupt viral transmission if a new case or sewage isolate are identified in Angola or central Africa.


Asunto(s)
COVID-19 , Poliomielitis , Poliovirus , Humanos , Aguas del Alcantarillado , Angola/epidemiología , Pandemias , COVID-19/epidemiología , Poliomielitis/prevención & control , Vacuna Antipolio Oral/efectos adversos , Brotes de Enfermedades/prevención & control
15.
J Infect Dis ; 203(7): 898-909, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21402542

RESUMEN

Wild poliovirus has remained endemic in northern Nigeria because of low coverage achieved in the routine immunization program and in supplementary immunization activities (SIAs). An outbreak of infection involving 315 cases of type 2 circulating vaccine-derived poliovirus (cVDPV2; >1% divergent from Sabin 2) occurred during July 2005-June 2010, a period when 23 of 34 SIAs used monovalent or bivalent oral poliovirus vaccine (OPV) lacking Sabin 2. In addition, 21 "pre-VDPV2" (0.5%-1.0% divergent) cases occurred during this period. Both cVDPV and pre-VDPV cases were clinically indistinguishable from cases due to wild poliovirus. The monthly incidence of cases increased sharply in early 2009, as more children aged without trivalent OPV SIAs. Cumulative state incidence of pre-VDPV2/cVDPV2 was correlated with low childhood immunization against poliovirus type 2 assessed by various means. Strengthened routine immunization programs in countries with suboptimal coverage and balanced use of OPV formulations in SIAs are necessary to minimize risks of VDPV emergence and circulation.


Asunto(s)
Brotes de Enfermedades , Poliomielitis/epidemiología , Poliomielitis/virología , Vacunas contra Poliovirus/efectos adversos , Poliovirus/aislamiento & purificación , Poliovirus/patogenicidad , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Genoma Viral , Política de Salud , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación , Nigeria/epidemiología , Poliomielitis/patología , Poliovirus/genética , Vacunas contra Poliovirus/administración & dosificación , Vacunación/estadística & datos numéricos , Adulto Joven
16.
J Clin Microbiol ; 47(6): 1939-41, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19386844

RESUMEN

We have adapted our previously described poliovirus diagnostic reverse transcription-PCR (RT-PCR) assays to a real-time RT-PCR (rRT-PCR) format. Our highly specific assays and rRT-PCR reagents are designed for use in the WHO Global Polio Laboratory Network for rapid and large-scale identification of poliovirus field isolates.


Asunto(s)
Cartilla de ADN/genética , Sondas de Oligonucleótidos/genética , Poliovirus/clasificación , Poliovirus/aislamiento & purificación , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Humanos , Sensibilidad y Especificidad
17.
PLoS Pathog ; 3(12): e191, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18085822

RESUMEN

Between October 2001 and April 2002, five cases of acute flaccid paralysis (AFP) associated with type 2 vaccine-derived polioviruses (VDPVs) were reported in the southern province of the Republic of Madagascar. To determine viral factors that favor the emergence of these pathogenic VDPVs, we analyzed in detail their genomic and phenotypic characteristics and compared them with co-circulating enteroviruses. These VDPVs appeared to belong to two independent recombinant lineages with sequences from the type 2 strain of the oral poliovaccine (OPV) in the 5'-half of the genome and sequences derived from unidentified species C enteroviruses (HEV-C) in the 3'-half. VDPV strains showed characteristics similar to those of wild neurovirulent viruses including neurovirulence in poliovirus-receptor transgenic mice. We looked for other VDPVs and for circulating enteroviruses in 316 stools collected from healthy children living in the small area where most of the AFP cases occurred. We found vaccine PVs, two VDPVs similar to those found in AFP cases, some echoviruses, and above all, many serotypes of coxsackie A viruses belonging to HEV-C, with substantial genetic diversity. Several coxsackie viruses A17 and A13 carried nucleotide sequences closely related to the 2C and the 3D(pol) coding regions of the VDPVs, respectively. There was also evidence of multiple genetic recombination events among the HEV-C resulting in numerous recombinant genotypes. This indicates that co-circulation of HEV-C and OPV strains is associated with evolution by recombination, resulting in unexpectedly extensive viral diversity in small human populations in some tropical regions. This probably contributed to the emergence of recombinant VDPVs. These findings give further insight into viral ecosystems and the evolutionary processes that shape viral biodiversity.


Asunto(s)
Brotes de Enfermedades , Enterovirus Humano C/aislamiento & purificación , Evolución Molecular , Genoma Viral , Poliovirus/aislamiento & purificación , Animales , Células Cultivadas , Enterovirus Humano C/clasificación , Enterovirus Humano C/inmunología , Heces/virología , Femenino , Genómica , Humanos , Madagascar/epidemiología , Masculino , Ratones , Epidemiología Molecular , Parálisis/epidemiología , Parálisis/fisiopatología , Parálisis/virología , Poliovirus/clasificación , Poliovirus/inmunología , Vacuna Antipolio Oral/administración & dosificación , ARN Viral/genética , Recombinación Genética , Serotipificación
18.
BMC Res Notes ; 11(1): 717, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30305145

RESUMEN

OBJECTIVE: Primary immunodeficiency (PID) patients are prone to developing viral infections and should not be vaccinated with live vaccines. In such patients, prolonged excretion and viral divergence may occur and they may subsequently act as reservoirs in the community introducing mutated virus and jeopardizing polio eradication. One hundred and thirty PID cases were included for poliovirus detection in stool with assessment of divergence of detected polioviruses from oral polio vaccine (OPV) virus. Clinical presentations of PID patients with detectable poliovirus in stool specimens are described. RESULTS: Six PID patients (4.5%) had detectable vaccine-derived poliovirus (VDPV) excretion in stool specimens; of these, five patients had severe combined immunodeficiency (two with acute flaccid paralysis, one with meningoencephalitis and two without neurological manifestations), and one patient had X-linked agammaglobulinemia (paralysis developed shortly after diagnosis of immunodeficiency). All six case-patients received trivalent OPV. Five case-patients had type 2 immunodeficiency-related vaccine-derived polioviruses (iVDPV2) excretion; one had concomitant excretion of Sabin like type 3 virus and one was identified as iVDPV1 excretor. Surveillance for poliovirus excretion among PID patients is critical as these patients represent a potential source to reseed polioviruses into populations.


Asunto(s)
Portador Sano/virología , Síndromes de Inmunodeficiencia/virología , Poliomielitis/transmisión , Vacuna Antipolio Oral/efectos adversos , Vacunación/efectos adversos , Esparcimiento de Virus , Portador Sano/inmunología , Portador Sano/patología , Erradicación de la Enfermedad , Egipto/epidemiología , Heces/virología , Femenino , Humanos , Síndromes de Inmunodeficiencia/epidemiología , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/mortalidad , Lactante , Masculino , Poliomielitis/epidemiología , Poliomielitis/inmunología , Poliomielitis/prevención & control , Poliovirus/inmunología , Poliovirus/patogenicidad , Vacuna Antipolio Oral/administración & dosificación , Vigilancia en Salud Pública
19.
Virus Res ; 127(1): 17-25, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17449127

RESUMEN

A type 2 vaccine-derived poliovirus (VDPV), differing from Sabin 2 at 2.5% (22/903) of VP1 nucleotide (nt) positions, was isolated from an incompletely immunized 21-month-old Nigerian child who developed acute flaccid paralysis in 2002. Sequences upstream of nt position 620 (within the 5'-untranslated region [5'-UTR]) and downstream of nt position 5840 (in the 3C(pro) region) were derived from species C enteroviruses unrelated to the oral poliovirus vaccine (OPV) strains. The two substitutions associated with the attenuated phenotype had either recombined out (A(481)-->G in the 5'-UTR) or reverted (Ile(143)-->Thr in VP1). The VDPV isolate had lost the temperature sensitive phenotype of Sabin 2 and it was antigenically distinct from the parental OPV strain, having amino acid substitutions in or near neutralizing antigenic sites 1 and 3. The date of the initiating OPV dose, calculated from the number of synonymous substitutions in the capsid region, was estimated to be approximately 16 to 18 months before onset of paralysis, a finding inconsistent with the most recent mass OPV campaign (conducted 12 days before onset of paralysis) as being the source of infection. Although no related type 2 VDPVs were detected in Nigeria or elsewhere, the VDPV was found in an area where conditions favor VDPV emergence and spread.


Asunto(s)
Proteínas de la Cápside/genética , Poliomielitis/virología , Vacuna Antipolio Oral/efectos adversos , Poliovirus/aislamiento & purificación , Regiones no Traducidas 5'/análisis , Proteínas de la Cápside/inmunología , Heces/virología , Genoma Viral , Humanos , Lactante , Masculino , Nigeria , Poliomielitis/prevención & control , Poliovirus/genética , Vacuna Antipolio Oral/administración & dosificación , Recombinación Genética , Vacunación , Vacunas Sintéticas/efectos adversos
20.
Comput Struct Biotechnol J ; 15: 456-462, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29276577

RESUMEN

Public health response to vaccine-derived poliovirus (VDPV) that is transmitted from person to person (circulating VDPV [cVDPV]) differs significantly from response to virus that replicates in individuals with primary immunodeficiency (immunodeficiency-associated VDPV [iVDPV]). cVDPV outbreaks require a community immunization response, whereas iVDPV chronic infections require careful patient monitoring and appropriate individual treatment. To support poliovirus outbreak response, particularly for type 2 VDPV, we investigated the genetic distinctions between cVDPV2 and iVDPV2 sequences. We observed that simple genetic measurements of nucleotide and amino acid substitutions are sufficient for distinguishing highly divergent iVDPV2 from cVDPV2 sequences, but are insufficient to make a clear distinction between the two categories among less divergent sequences. We presented quantitative approaches using genetic information as a surveillance tool for early detection of VDPV outbreaks. This work suggests that genetic variations between cVDPV2 and iVDPV2 may reflect differences in viral micro-environments, host-virus interactions, and selective pressures during person-to-person transmission compared with chronic infections in immunodeficient patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA