Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Exp Hepatol ; 13(6): 1008-1016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37975051

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Aim: This study aimed to assess serum human telomerase enzyme (hTERT) levels and their relation to the progression of liver disease. Also, it aimed to assess the effect of hepatitis C virus (HCV) core protein on memory T-cells in HCV patients with or without HCC and the correlation between memory cell phenotype and the progression of the disease in the same patients. Methods: HTERT level in serum was assessed through relative quantitative RT-PCR. Flow cytometric analysis was used to assess T-cell responsiveness (as IFN- γ secretion) before and after stimulation with HCV core protein and the memory CD8+ cell phenotype using several differentiation markers. Results: HTERT was found to be increased in a stepwise manner upon comparing its level in controls, chronic hepatitis patients, cirrhotic patients, and HCC patients. T-cells showed a similar manner of stepwise decrease in response (decreased IFN- γ secretion) in HCC patients compared to HCV patients without HCC and controls. Also, late differentiated memory cells (CD8+, CD27-, CD28-, CD45RA+, and CCR7-) were depleted in HCC patients compared to HCV patients without HCC. Conclusion: These results suggest a negative correlation between hTERT and IFN- γ secretion by T-cells in HCV patients and that this relationship, along with the depletion of late differentiated memory cells, could help the progression of liver disease to HCC.

2.
J Genet Eng Biotechnol ; 21(1): 65, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37211584

RESUMEN

BACKGROUND: SARS-CoV-2 infection involves disturbing multiple molecular pathways related to immunity and cellular functions. PIM1 is a serine/threonine-protein kinase found to be involved in the pathogenesis of several viral infections. One PIM1 substrate, Myc, was reported to interact with TMPRSS2, which is crucial for SARS-CoV-2 cell entry. PIM1 inhibitors were reported to have antiviral activity through multiple mechanisms related to immunity and proliferation. This study aimed to evaluate the antiviral activity of 2-pyridone PIM1 inhibitor against SARS-CoV-2 and its potential role in hindering the progression of COVID-19. It also aimed to assess PIM1 inhibitor's effect on the expression of several genes of Notch signaling and Wnt pathways. In vitro study was conducted on Vero-E6 cells infected by SARS-CoV-2 "NRC-03-nhCoV" virus. Protein-protein interaction of the study genes was assessed to evaluate their relation to cell proliferation and immunity. The effect of 2-pyridone PIM1 inhibitor treatment on viral load and mRNA expression of target genes was assessed at three time points. RESULTS: Treatment with 2-pyridone PIM1 inhibitor showed potential antiviral activity against SARS-CoV-2 (IC50 of 37.255 µg/ml), significantly lowering the viral load. Functional enrichments of the studied genes include negative regulation of growth rate, several biological processes involved in cell proliferation, and Interleukin-4 production, with interleukin-6 as a predicted functional partner. These results suggest an interplay between study genes with relation to cell proliferation and immunity. Following in vitro SARS-CoV-2 infection, Notch pathway genes, CTNNB1, SUMO1, and TDG, were found to be overexpressed compared to uninfected cells. Treatment with 2-pyridone PIM1 inhibitor significantly lowers the expression levels of study genes, restoring Notch1 and BCL9 to the control level while decreasing Notch2 and CTNNB1 below control levels. CONCLUSION: 2-pyridone PIM1 inhibitor could hinder cellular entry of SARS-CoV-2 and modulate several pathways implicated in immunity, suggesting a potential benefit in the development of anti-SARS-CoV-2 therapeutic approach.

3.
Exp Biol Med (Maywood) ; 246(1): 40-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32938228

RESUMEN

IMPACT STATEMENT: GATA3 mutations are known to play an important role in breast cancer progression. The exact role and mechanisms of these mutations remain controversial as some studies suggest a relation to breast tumor growth, while others suggest a relation to longer survival. GATA3 germline mutations are not well studied in breast cancer. In this study, it was hypothesized that different types of GATA3 mutations could contribute to the breast cancer progression in different ways. GATA3 exon 6, which is important for GATA3 protein functions, was reported to have hotspots, and hence it was selected for study. Intronic GATA3 germline mutations were found to be related to favorable prognosis, while protein coding mutations were found to be related to unfavorable prognosis. Bioinformatics study of large publically available datasets showed that GATA3 mutations lead to dysregulation of pathways related to T-cells activation, inflammation, and breast cancer development.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Exones/genética , Factor de Transcripción GATA3/genética , Mutación de Línea Germinal/genética , Codón/genética , Análisis Mutacional de ADN , Egipto , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA