RESUMEN
BACKGROUND AND AIMS: Although HCV is one of the major health problems worldwide with the highest prevalence of genotype 4a in Egypt, it is poorly understood because of the limitations of having a robust in vitro model that allows the investigation and understanding of viral pathogenesis and life cycle. Genomic replicons for HCV are widely used and proved to have strong replication efficiency in cell culture, however, they are not able to produce infectious particles to enable the investigation of the whole viral life cycle and they mostly represent few sub-genomic classes for HCV. Hence, Genotype specific replication system is necessary to address specific sub-genomic phenotypes related to Hepatitis C pathogenicity. METHODS: In this study we attempt to develop a sustainable co-culture model, which potentially provides essential route of infection for HCV by using HCV-positive sera from infected patients. In this novel in vitro model, we tested the viral replication in co-cultured Huh 7.5 and HepG2 cells in order to sustain full viral replication cycle. We used high viral load serum of HCV-infected patients (10 × 106 to 20 × 106 IU/ml) as a source for HCV particles to infect co-cultured cells for 7 days. RESULTS AND CONCLUSIONS: Viral replication capacity was increased 3-5 folds in the coculture condition compared to the individual cell lines, which indicates an improvement to viral infectivity in vitro. SIGNIFICANCE STATEMENT: This novel coculture system represents a new in vitro model that will help study the underlying mechanisms of HCV pathogenicity.
Asunto(s)
Técnicas de Cocultivo/métodos , Hepacivirus/genética , Suero/virología , Replicación Viral/genética , Línea Celular Tumoral , Egipto , Genotipo , Células Hep G2 , Hepatitis C/virología , Humanos , ARN Viral/genética , Replicón/genética , Carga Viral/genéticaRESUMEN
To evaluate the frequency of single-nucleotide polymorphism at the -88 myxovirus resistance (MxA) gene promoter region in relation to the status of hepatitis C virus (HCV) progression and response to combined interferon (IFN) in chronic HCV Egyptian patients. One hundred ten subjects were enrolled in the study; 60 HCV genotype 4-infected patients who underwent combined IFN therapy and 50 healthy individuals. All subjects were genotyped for -88 MxA polymorphism by the restriction fragment length polymorphism technique. There was an increasing trend of response to combined IFN treatment as 34.9% of GG, 64.3% of GT, and 66.7% of TT genotypes were sustained responders (P=0.05). The T allele was significantly affecting the response rate more than G allele (P=0.032). Moreover, the hepatic fibrosis score and hepatitis activity were higher in GG genotypes compared with the GT and TT genotypes. The multivariate analysis showed that the MxA GG genotype was an independent factor increasing the no response to IFN therapy (P=0.04, odds ratio [OR] 3.822, 95% confidence interval [CI] 1.056-11.092), also MxA G allele (P=0.0372, OR 2.905, 95% CI 1.066-7.919). MxA -88 polymorphism might be a potential biomarker to predict response to IFN and disease progression in chronic HCV-infected patients.