Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(8): 2473-2480, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38252466

RESUMEN

Two-dimensional materials (2DMs) have gained significant interest for resistive-switching memory toward neuromorphic and in-memory computing (IMC). To achieve atomic-level miniaturization, we introduce vertical hexagonal boron nitride (h-BN) memristors with graphene edge contacts. In addition to enabling three-dimensional (3D) integration (i.e., vertical stacking) for ultimate scalability, the proposed structure delivers ultralow power by isolating single conductive nanofilaments (CNFs) in ultrasmall active areas with negligible leakage thanks to atomically thin (∼0.3 nm) graphene edge contacts. Moreover, it facilitates studying fundamental resistive-switching behavior of single CNFs in CVD-grown 2DMs that was previously unattainable with planar devices. This way, we studied their programming characteristics and observed a consistent single quantum step in conductance attributed to unique atomically constrained nanofilament behavior in CVD-grown 2DMs. This resistive-switching property was previously suggested for h-BN memristors and linked to potential improvements in stability (robustness of CNFs), and now we show experimental evidence including superior retention of quantized conductance.

2.
ACS Nano ; 18(22): 14327-14338, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767980

RESUMEN

In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS2/Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS2 in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide. Short- and long-term properties are validated based on programmable multilevel retention tests. Moreover, we confirm various synaptic characteristics of the device, demonstrating its potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its programmable retention properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA