RESUMEN
Due to the extensive use of electromagnetic fields in everyday life, more information is required for the detection of mechanisms of interaction and the possible side effects of electromagnetic radiation on the structure and function of the organism. In this paper, we study the effects of low-power microwaves (2.45 GHz) on the membrane fluidity of rod photoreceptor cells. The retina is expected to be very sensitive to microwave irradiation due to the polar character of the photoreceptor cells [Biochim. Biophys. Acta 1273 (1995) 217] as well as to its high water content [Stud. Biophys. 81 (1981) 39].
Asunto(s)
Fluidez de la Membrana/efectos de la radiación , Microondas , Animales , Membrana Celular/efectos de la radiación , Oscuridad , Polarización de Fluorescencia , Rana ridibundaRESUMEN
Microsomal prostaglandin (PG) E(2) synthase-1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE(2), a key proinflammatory mediator. The purpose of this study was to elucidate the regulation of mPGES-1 mRNA expression in cardiomyocytes, define the role of JNK enzymes in this process, and characterize the role of mPGES-1 in cardiomyocyte PGE(2) biosynthesis. In neonatal cardiomyocytes, interleukin-1beta and lipopolysaccharide (LPS) both stimulated mPGES-1 mRNA expression and increased mPGES-1 mRNA stability and protein synthesis but failed to increase mPGES-1 mRNA transcription. Treatment with the JNK1/2 inhibitor, SP600125, abrogated the increases in mPGES-1 mRNA stability, mPGES-1 protein synthesis, and PGE(2) release induced by interleukin-1beta or LPS. mPGES-1 protein synthesis was observed in LPS-stimulated neonatal cardiomyocytes from jnk1(-/-) or jnk2(-/-) mice. In contrast, infection of jnk1(-/-) cardiomyocytes with an adenovirus encoding phosphorylation-resistant JNK2 (ad-JNK2-DN), or of jnk2(-/-) cardiomyocytes with ad-JNK1-DN, significantly decreased LPS-stimulated mPGES-1 protein synthesis. Similarly, co-infection with ad-JNK1-DN and ad-JNK2-DN attenuated LPS-stimulated mPGES-1 protein synthesis in cardiomyocytes from wild type mice. Targeted deletion of the gene encoding mPGES-1 led to a 3.2-fold decrease in LPS-stimulated PGE(2) release by cardiomyocytes in comparison with wild type cells but had no effect on COX-1, COX-2, mPGES-2, or cytosolic PGES mRNA levels. These studies provide direct evidence that mPGES-1 mRNA levels in cardiomyocytes are augmented by stabilization of mPGES-1 mRNA, that JNK1 or JNK2 can participate in the regulation of mPGES-1 protein synthesis in these cells, and that mPGES-1 catalyzes the majority of LPS-induced PGE(2) biosynthesis by cardiomyocytes.