Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant J ; 117(4): 1099-1114, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983636

RESUMEN

Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
2.
Biochem Biophys Res Commun ; 700: 149568, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38306931

RESUMEN

Rice is a staple crop continually threatened by bacterial and fungal pathogens. OsWRKY transcription factors are involved in various disease responses. However, the functions of many OsWRKYs are still elusive. In this study, we demonstrated that OsWRKY7 enhances rice immunity against Xanthomonas oryzae pv. oryzae (Xoo). OsWRKY7 localized in the nucleus, and gene expression of OsWRKY7 was induced by Xoo inoculation. The OsWRKY7-overexpressing lines showed enhanced resistant phenotype against Xoo, and gene expressions of OsPR1a, OsPR1b, and OsPR10a were significantly increased in the transgenic lines after Xoo inoculation. Moreover, OsWRKY7 activated the OsPR promoters, and the promoter activities were synergistically upregulated by flg22. Genetic- and cell-based analysis showed OsWRKY7 is involved in pattern-triggered immunity against Xoo. These results suggest that OsWRKY7 plays a role as a positive regulator of disease resistance to Xoo through pattern-triggered immunity.


Asunto(s)
Oryza , Xanthomonas , Reconocimiento de Inmunidad Innata , Xanthomonas/fisiología , Regiones Promotoras Genéticas , Resistencia a la Enfermedad/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Planta ; 259(6): 124, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630137

RESUMEN

KEY MESSAGE: OsICS1 but not OsICS1-L mediates the rice response to Xoo inoculation, with its overexpression increasing resistance against this pathogen. OsICS1 but not OsICS-L is directly upregulated by OsWRKY6. Rice (Oryza sativa) is a staple crop for about half of the global population and is particularly important in the diets of people living in Asia, Latin America, and Africa. This crop is continually threatened by bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), which drastically reduces yields; therefore, it is needed to elucidate the plant's resistance mechanisms against Xoo. Isochorismate synthase (ICS1) generates salicylic acid (SA) and increases resistance against bacterial disease. The OsICS1 is differently annotated in rice genome databases and has not yet been functionally characterized in the context of Xoo infection. Here, we report that the expression of the OsICS1 is directly regulated by OsWRKY6 and increases plant resistance against Xoo. Inoculation with Xoo increased the expression of OsICS1 but not that of the long variant of OsICS1 (OsICS1-L). OsWRKY6 directly activated the OsICS1 promoter but not the OsICS1-L promoter. OsICS1 overexpression in rice increased resistance against Xoo through the induction of SA-dependent bacterial defense genes. These data show that OsICS1 promotes resistance against Xoo infection.


Asunto(s)
Oryza , Xanthomonas , Humanos , Asia , Oryza/genética , Regiones Promotoras Genéticas/genética , Ácido Salicílico
4.
PLoS Genet ; 17(4): e1009510, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826618

RESUMEN

The R2R3-MYB transcription factor MYB46 functions as a master switch for secondary cell wall biosynthesis, ensuring the exquisite expression of the secondary wall biosynthetic genes in the tissues where secondary walls are critical for growth and development. At the same time, suppression of its function is needed when/where formation of secondary walls is not desirable. Little is known about how this opposing control of secondary cell wall formation is achieved. We used both transient and transgenic expression of MYB46 and mitogen-activated protein kinase 6 (MPK6) to investigate the molecular mechanism of the post-translational regulation of MYB46. We show that MYB46 is phosphorylated by MPK6, leading to site specific phosphorylation-dependent degradation of MYB46 by the ubiquitin-mediated proteasome pathway. In addition, the MPK6-mediated MYB46 phosphorylation was found to regulate in planta secondary wall forming function of MYB46. Furthermore, we provide experimental evidences that MYB83, a paralog of MYB46, is not regulated by MPK6. The coupling of MPK signaling to MYB46 function provides insights into the tissue- and/or condition-specific activity of MYB46 for secondary wall biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pared Celular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Estabilidad Proteica , Activación Transcripcional/genética
5.
Plant J ; 112(4): 966-981, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36168109

RESUMEN

Many ubiquitin E3 ligases function in plant immunity. Here, we show that Oryza sativa (rice) DDB1 binding WD (OsDWD1) suppresses immune responses by targeting O. sativa non-expresser of pathogenesis-related gene 1 (OsNPR1) for degradation. Knock-down and overexpression experiments in rice plants showed that OsDWD1 is a negative regulator of the immune response and that OsNPR1 is a substrate of OsDWD1 and a substrate receptor of OsCRL4. After constructing the loss-of-function mutant OsDWD1R239A , we showed that the downregulation of OsNPR1 seen in rice lines overexpressing wild-type (WT) OsDWD1 (OsDWD1WT -ox) was compromised in OsDWD1R239A -ox lines, and that OsNPR1 upregulation enhanced resistance to pathogen infection, confirming that OsCRL4OsDWD1 regulates OsNPR1 protein levels. The enhanced disease resistance seen in OsDWD1 knock-down (OsDWD1-kd) lines contrasted with the reduced disease resistance in double knock-down (OsDWD1/OsNPR1-kd) lines, indicating that the enhanced disease resistance of OsDWD1-kd resulted from the accumulation of OsNPR1. Moreover, an in vivo heterologous protein degradation assay in Arabidopsis thaliana ddb1 mutants confirmed that the CUL4-based E3 ligase system can also influence OsNPR1 protein levels in Arabidopsis. Although OsNPR1 was degraded by the OsCRL4OsDWD1 -mediated ubiquitination system, the phosphodegron-motif-mutated NPR1 was partially degraded in the DWD1-ox protoplasts. This suggests that there might be another degradation process for OsNPR1. Taken together, these results indicate that OsDWD1 regulates OsNPR1 protein levels in rice to suppress the untimely activation of immune responses.


Asunto(s)
Arabidopsis , Oryza , Oryza/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad , Arabidopsis/genética
6.
New Phytol ; 237(3): 823-839, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478538

RESUMEN

Cellular sugar starvation and/or energy deprivation serves as an important signaling cue for the live cells to trigger the necessary stress adaptation response. When exposed to cellular energy stress (ES) conditions, the plants reconfigure metabolic pathways and rebalance energy status while restricting vegetative organ growth. Despite the vital importance of this ES-induced growth restriction, the regulatory mechanism underlying the response remains largely elusive in plants. Using plant cell- and whole plant-based functional analyses coupled with extended genetic validation, we show that cellular ES-activated SNF1-related protein kinase 1 (SnRK1.1) directly interacts with and phosphorylates E2Fa transcription factor, a critical cell cycle regulator. Phosphorylation of E2Fa by SnRK1.1 leads to its proteasome-mediated protein degradation, resulting in S-phase repression and organ growth restriction. Our findings show that ES-dependently activated SnRK1.1 adjusts cell proliferation and vegetative growth for plants to cope with constantly fluctuating environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción E2F/metabolismo
7.
Planta ; 255(2): 47, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076864

RESUMEN

MAIN CONCLUSION: The rice protein OsWRKY6 directly activates OsWRKY45 and OsWRKY47 expression, and also activates OsPR1a and OsPR1b through the two OsWRKYs, and this transcriptional module participates in Xa1-mediated defense against the pathogen Xanthomonas oryzae pv. oryzae. Biotic stress, the pathogen Xanthomonas oryzae pv. oryzae (Xoo) in particular, negatively impacts worldwide productivity and yield in the staple crop rice (Oryza sativa). OsWRKY transcription factors are involved in various biotic stress responses in rice, and OsWRKY6 specifically acts as an important defense regulator against Xoo. However, the relationship between OsWRKY6 and other OsWRKYs, as well as its role in resistance (R) gene-mediated defense, have yet to be studied in depth. Here, we characterized a transcriptional cascade triggered by OsWRKY6 that regulated defense against Xoo infection mediated by the NBS-LRR protein Xa1. OsWRKY45 and OsWRKY47 were identified as direct transcriptional targets of OsWRKY6, and their two gene products reciprocally activated their two genes. Furthermore, OsWRKY6 activated OsPR1a and OsPR1b via the OsWRKY45 and OsWRKY47. Two OsWRKY6 RNAi knockdown lines showed significantly reduced defense even against an incompatible Xoo infection, and the expression of OsWRKY6 was not regulated by OsWRKY51 and OsWRKY88. This study reveals that a novel downstream transcriptional pathway activated by OsWRKY6 is involved in Xa1-mediated defense against Xoo.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/metabolismo
8.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955958

RESUMEN

The phytohormone abscisic acid (ABA) regulates various aspects of plant growth, development, and stress responses. ABA suppresses innate immunity to Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa), but the identity of the underlying regulator is unknown. In this study, we revealed that OsWRKY114 is involved in the ABA response during Xoo infection. ABA-induced susceptibility to Xoo was reduced in OsWRKY114-overexpressing rice plants. OsWRKY114 attenuated the negative effect of ABA on salicylic acid-dependent immunity. Furthermore, OsWRKY114 decreased the transcript levels of ABA-associated genes involved in ABA response and biosynthesis. Moreover, the endogenous ABA level was lower in OsWRKY114-overexpressing plants than in the wild-type plants after Xoo inoculation. Taken together, our results suggest that OsWRKY114 is a negative regulator of ABA that confers susceptibility to Xoo in rice.


Asunto(s)
Oryza , Xanthomonas , Ácido Abscísico/farmacología , Enfermedades de las Plantas/genética
9.
Biochem Biophys Res Commun ; 533(4): 1262-1268, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33051057

RESUMEN

Rice (Oryza sativa L.) is a global staple crop, but its yield is severely threatened by bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo). The OsWRKY transcription factor family play a central role in innate plant immunity against Xoo, but the various biological functions of a large number of OsWRKYs remain to be understood. We characterized the role of OsWRKY114 against Xoo. OsWRKY114 has transcriptional activity in yeast and localizes in the nucleus. When OsWRKY114 is overexpressed in transgenic plants they show enhanced disease resistance against Xoo compared with wild types. By using genetic- and cell-based functional analyses, we showed OsWRKY114 directly associates with the promoters of OsPR1a and Chitinase and increases the promoter activities. These results suggest that OsWRKY114 enhances the innate immunity of Asian rice against Xoo through direct activation of defense genes that include OsPR1a and chtinase. This is the first report to functionally characterize OsWRKY114 in Xoo infection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Transactivadores/metabolismo , Xanthomonas , Quitinasas/genética , Resistencia a la Enfermedad/genética , Oryza/microbiología , Proteínas de Plantas/química , Regiones Promotoras Genéticas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Transactivadores/química , Activación Transcripcional
10.
J Exp Bot ; 71(12): 3735-3748, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32227093

RESUMEN

WRKY proteins play essential roles as negative or positive regulators of pathogen defense. This study explored the roles of different OsWRKY proteins in basal defense and Xa1-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) infection in rice. Assays of disease in OsWRKY10KD and OsWRKY88KD lines following infection with an incompatible Xoo race, which induced Xa1-mediated resistance in wild-type plants, showed that OsWRKY10 and OsWRKY88 were positive regulators of Xa1-mediated resistance. OsWRKY10 also acted as a positive regulator in basal defense by directly or indirectly activating transcription of defense-related genes. OsWRKY10 activated the OsPR1a promoter by binding to specific WRKY binding sites. Two transcriptional regulatory cascades of OsWRKY10 were identified in basal defense and Xa1-mediated resistance. In the first transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10 whereas OsWRKY51 acted upstream. OsWRKY10 activated OsPR1a in two distinct ways: by binding to its promoter and, at the same time, by indirect activation through OsWRKY47. In the second transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10, and OsWRKY88 acted upstream. These OsWRKY10 transcriptional regulatory cascades played important roles in basal defense and Xa1-mediated resistance to enable the mounting of a rapid immune response against pathogens.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Enfermedades de las Plantas/genética
11.
Plant Cell Environ ; 37(10): 2303-12, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24890857

RESUMEN

Terrestrial plants are exposed to complex stresses of high salt-induced abscisic acid (ABA) and submergence-induced hypoxia when seawater floods fields. Many studies have investigated plant responses to individual stress conditions, but not so much for coupled or sequentially imposed stresses. We examined molecular regulatory mechanisms of gene expression underlying the cellular responses involved in crosstalk between salt and hypoxia stresses. Salt/ABA- and AtMYC2-dependent induction of a synthetic ABA-responsive element and the native RD22 promoters were utilized in our cell-based functional assays. Such promoter-based reporter induction was largely inhibited by hypoxia and hypoxia-inducible AKIN10 activity. Biochemical analyses showed that AKIN10 negatively modulates AtMYC2 protein accumulation via proteasome activity upon AKIN10 kinase activity-dependent protein modification. Further genetic analysis using transgenic plants expressing AKIN10 provided evidence that AKIN10 activity undermined AtMYC2-dependent salt tolerance. Our findings unravel a novel molecular interaction between the key signalling constituents leading crosstalk between salt and hypoxia stresses in Arabidopsis thaliana under the detrimental condition of submergence in saltwater.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Ácido Abscísico/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión , Tolerancia a la Sal , Agua de Mar/efectos adversos , Cloruro de Sodio/farmacología
12.
Antioxidants (Basel) ; 12(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978849

RESUMEN

Salt stress is a critical environmental stress that impairs plant growth and development, especially in crop productivity; therefore, understanding the salt response in plants is the basis for their development of salt tolerance. Under salinity, soybean mitogen-activated protein kinase 6 (GmMPK6) is activated and positively regulates reactive oxygen species (ROS) generation. However, it is not yet elucidated how GmMPK6 regulates ROS generation and its role in salt tolerance. Here, we show that GmMPK6, solely activated in NaCl treatment, and gene expression of GmRbohI1 was not only reduced by MPK inhibitor SB202190 in NaCl treatment, but also increased in a GMKK1-expressing protoplast. Furthermore, SB202190 and the NADPH-oxidase inhibitor, diphenyleneiodonium chloride, increased susceptibility to salt stress. The expression of GmRD19A was induced by NaCl treatment, but this expression was compromised by SB202190. Consequently, we revealed that GmMPK6 induces ROS generation through the transcriptional regulation of GmRbohI1 and increases salt tolerance in soybean.

13.
Tree Physiol ; 43(7): 1201-1217, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37014763

RESUMEN

Tracheary elements (i.e. vessel elements and tracheids) are highly specialized, non-living cells present in the water-conducting xylem tissue. In angiosperms, proteins in the VASCULAR-RELATED NAC-DOMAIN (VND) subgroup of the NAC (NAM, ATAF1,2, and CUC2) transcription factor family (e.g. AtVND6) are required for the differentiation of vessel elements through transcriptional regulation of genes responsible for secondary cell wall formation and programmed cell death. Gymnosperms, however, produce only tracheids, the mechanism of which remains elusive. Here, we report functional characteristics of PdeNAC2, a VND homolog in Pinus densiflora, as a key regulator of tracheid formation. Interestingly, our molecular genetic analyses show that PdeNAC2 can induce the formation of vessel element-like cells in angiosperm plants, demonstrated by transgenic overexpression of either native or NAC domain-swapped synthetic genes of PdeNAC2 and AtVND6 in both Arabidopsis and hybrid poplar. Subsequently, genome-wide identification of direct target (DT) genes of PdeNAC2 and AtVND6 revealed 138 and 174 genes as putative DTs, respectively, but only 17 genes were identified as common DTs. Further analyses have found that PdeNAC2 does not control some AtVND6-dependent vessel differentiation genes in angiosperm plants, such as AtVRLK1, LBD15/30 and pit-forming Rho-like GTPases from plant (ROP) signaling genes. Collectively, our results suggest that different target gene repertoires of PdeNAC2 and AtVND6 may contribute to the evolution of tracheary elements.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Xilema/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Plants (Basel) ; 11(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35631784

RESUMEN

Protein biosynthesis is achieved through translation, which consumes enormous energy. Therefore, under conditions of limited energy supply, translation progress should be strictly coordinated. Sucrose non-fermenting kinase1 (SNF1)-related protein kinase 1 (SnRK1) is an evolutionarily conserved master regulator of cellular energy stress signaling in plants. Rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 enhance hypoxia tolerance and induce the expression of stress-related genes. However, whether SnRK1 modulates protein synthesis in plants is unknown. In this study, using translational reporter constructs transfected in Arabidopsis protoplasts we showed that the expression of OsSnRK1A and AtSnRK1.1 decreases the abundance of canonical proteins without affecting their encoding transcript levels and protein stability. Moreover, the loading of total mRNAs and GFP mRNAs into the heavy polysome fraction which is normally translated was attenuated in transgenic Arabidopsis lines constitutively expressing OsSnRK1A or AtSnRK1.1. Taken together, these results suggest that OsSnRK1A and AtSnRK1.1 suppress protein translation to maintain energy homeostasis.

15.
Plants (Basel) ; 10(8)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34451563

RESUMEN

Wounding is a constant threat to plant survival throughout their lifespan; therefore, understanding the biological responses to wounds at the cellular level is important. The protoplast system is versatile for molecular biology, however, no wounding studies on this system have been reported. We established a new approach for wounding research using mechanically damaged Arabidopsis mesophyll protoplasts. Wounded protoplasts showed typical wounding responses, such as increased MPK6 kinase activity and upregulated JAZ1 expression. We also assessed expression profiles and protein stability of the basic helix-loop-helix transcription factor MYC2 in wounded protoplasts. Promoter activity, gene expression, and protein stability of MYC2 were compromised, but recovered in the early stage of wounding. In the late stage, the promoter activity and expression of MYC2 were increased, but the protein stability was not changed. According to the results of the present study, this new cell-based approach will be of use in various molecular studies on plant wounding.

16.
Plants (Basel) ; 10(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34961082

RESUMEN

The plant mitogen-activated protein kinase (MPK) cascade, a highly conserved signal transduction system in eukaryotes, plays a crucial role in the plant's response to environmental stimuli and phytohormones. It is well-known that nuclear translocation of MPKs is necessary for their activities in mammalian cells. However, the mechanism underlying nuclear translocation of plant MPKs is not well elucidated. In the previous study, it has been shown that soybean MPK6 (GmMPK6) is activated by phosphatidic acid (PA) and hydrogen peroxide (H2O2), which are two signaling molecules generated during salt stress. Using the two signaling molecules, we investigated how salt stress triggers its translocation to the nucleus. Our results show that the translocation of GmMPK6 to the nucleus is mediated by H2O2, but not by PA. Furthermore, the translocation was interrupted by diphenylene iodonium (DPI) (an inhibitor of RBOH), confirming that H2O2 is the signaling molecule for the nuclear translocation of GmMPK6 during salt stress.

17.
Methods Mol Biol ; 1171: 3-12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24908115

RESUMEN

Mitogen-Activated Protein Kinase (MAPK) cascade is one of the main signaling components mediating abiotic and biotic stress and hormone information in plants. Plant MAPK study has been impeded with a genetic approach using a long-term phenotypic analysis in spite of the transient nature of the protein kinase signaling. Arabidopsis leaf mesophyll protoplasts provide a versatile resource for diverse cell-based assays to acquire immediate molecular and biochemical responses with transient expression of MAPK cascade components of interests. Thus, it is an attractive tool for a high-throughput functional analysis of Arabidopsis MAPK cascade signaling. However, transient expression in Arabidopsis mesophyll protoplast (TEAMP) system requires mastered skills for protoplast preparation and handling to achieve steady and stable data. Here, we have described two analytical methods for MAPK cascade signaling using TEAMP system.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Sistema de Señalización de MAP Quinasas , Células del Mesófilo/citología , Protoplastos/citología , Protoplastos/metabolismo , Arabidopsis/crecimiento & desarrollo , Western Blotting , Inmunoprecipitación , Proteínas de Plantas/metabolismo
18.
Mol Cells ; 34(3): 271-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22886763

RESUMEN

Mitogen-activated protein kinase (MAPK) is activated by various biotic and abiotic stresses. Salt stress induces two well-characterized MAPK activating signaling molecules, phosphatidic acid (PA) via phospholipase D and phospholipase C, and reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. In our previous study, the activity of soybean MAPK, GMK1 was strongly induced within 5 min of 300 mM NaCl treatment and this early activity was regulated by PA. In this study, we focused on the regulation of GMK1 at the later stage of the salt stress, because its activity was strongly persistent for up to 30 min. H(2)O(2) activated GMK1 even in the presence of PA generation inhibitors, but GMK1 activity was greatly decreased in the presence of diphenyleneiodonium, an inhibitor of NADPH-oxidase after 5 min of the treatment. On the contrary, the n-butanol and neomycin reduced GMK1 activity within 5 min of the treatment. Thus, GMK1 activity may be sustained by H(2)O(2) 10 min after the treatment. Further, GMK1 was translocated into the nucleus 60 min after NaCl treatment. In the relationship between GMK1 and ROS generation, ROS generation was reduced by SB202190, a MAPK inhibitor, but was increased in protoplast overexpressing TESD-GMKK1. However, these effects were occurred at prolonged time of NaCl treatment. These data suggest that GMK1 indirectly regulates ROS generation. Taken together, we propose that soybean GMK1 is dually regulated by PA and H(2)O(2) at a time dependant manner and translocated to the nucleus by the salt stress signal.


Asunto(s)
Núcleo Celular/metabolismo , Glycine max/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ácidos Fosfatidicos/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Glycine max/efectos de los fármacos , Glycine max/fisiología , Estrés Fisiológico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA