Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anat ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808647

RESUMEN

Previous studies have poorly described the initial development process of the tendinous intersections of the rectus abdominis muscle (RAM). The present study aimed to observe the formation of tendinous intersections in the RAM during the early fetal period using diffusion tensor imaging (DTI). Fifteen human fetal specimens (crown-rump length [CRL]: 39.5-93.7 mm) were selected. Three-dimensional measurements revealed that Zone-4 (i.e., the zone between the pubic symphysis and the caudal base of the umbilical ring in the RAM) had a smaller width and was thicker than Zone-1 and Zone-2 (i.e., the zones between the costal arch and the cranial base of the umbilical ring) and Zone-3 (i.e., the zone at the umbilical ring). Characteristics of tendinous intersections in the RAM during the early fetal period were assessed according to number, size, type, laterality, and sex. The mean number of tendinous intersections on both sides was 3.1 (range: 2.0-4.0), and 21% of specimens had only two tendinous intersections, which was higher than that reported in previous adult studies. The present data suggest that the formation of tendinous intersections was still in progress in specimens with two tendinous intersections in the RAM and that the third tendinous intersection was formed in Zone-2. Ordinal logistic regression via generalized estimating equations revealed that the odds for a higher type of tendinous intersections in Zone-1 and Zone-2 were significantly higher than those in Zone-4 (adjusted odds ratio: 14.85, 8.84). The odds for the presence of incomplete types (tendinous intersections that could not completely transverse the RAM) in Zone-3 were significantly higher than those in Zone-1 (adjusted odds ratio: 7.4). The odds for missing tendinous intersections in Zone-4 were significantly higher than those in Zone-1 (adjusted odds ratio: 20.5). These zonal differences in the formation of tendinous intersections were consistent with those observed in previous adult studies. In this study, DTI detected tendinous intersections in a sample with a CRL of 45.8 mm (approximately 11 weeks of gestation), which is earlier than that in previous histological findings, indicating that the RAM does not have mature tendinous intersections until the 17th week of gestation. In conclusion, DTI could detect the premature differentiation of tendinous intersection formation. Our data may aid in elucidating the developmental processes of tendinous intersections in the RAM.

2.
J Anat ; 244(1): 142-158, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37559438

RESUMEN

The left atrium wall has several origins, including the body, appendage, septum, atrial-ventricular canal, posterior wall, and venous component. Here, we describe the morphogenesis of left atrium based on high-resolution imaging (phase-contrast X-ray computed tomography and magnetic resonance imaging). Twenty-three human embryos and 19 fetuses were selected for this study. Three-dimensional cardiac images were reconstructed, and the pulmonary veins and left atrium, including the left atrial appendage, were evaluated morphologically and quantitatively. The positions of the pericardial reflections were used as landmarks for the border of the pericardial cavity. The common pulmonary vein was observed in three specimens at Carnegie stages 17-18. The pericardium was detected at the four pulmonary veins (left superior, left inferior, right superior, and right inferior pulmonary veins) at one specimen at Carnegie stage 18 and all larger specimens, except the four samples. Our results suggest that the position of the pericardial reflections was determined at two pulmonary veins (right and left pulmonary vein) and four pulmonary veins almost simultaneously when the dorsal mesocardial connection between the embryo and heart regressed. The magnetic resonance images and reconstructed heart cavity images confirmed that the left atrium folds were present at the junction between the body and venous component. Three-dimensional reconstruction showed that the four pulmonary veins entered the dorsal left atrium tangentially from the lateral to the medial direction. More specifically, the right pulmonary veins entered at a greater angle than the left pulmonary veins. The distance between the superior and inferior pulmonary veins was shorter than that between the left and right pulmonary veins. Three-dimensional reconstruction showed that the venous component increased proportionally with growth. No noticeable differences in discrimination between the right and left parts of the venous component emerged, while the junction between the venous component and body gradually became inconspicuous but was still recognizable by the end of the observed early fetal period. The left superior pulmonary vein had the smallest cross-sectional area and most flattened shape, whereas the other three were similar in area and shape. The left atrial appendage had a large volume in the center and extended to the periphery as a lobe-like structure. The left atrial appendage orifice increased in the area and tended to become flatter with growth. The whole left atrium volume^(1/3) increased almost proportionally with growth, parallel to the whole heart volume. This study provided a three-dimensional and quantitative description of the developmental process of the left atrium, comprising the venous component and left atrial appendage formation, from the late embryonic to the early fetal stages.


Asunto(s)
Apéndice Atrial , Venas Pulmonares , Humanos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/anatomía & histología , Apéndice Atrial/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Feto , Morfogénesis
3.
J Magn Reson Imaging ; 59(2): 661-672, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37259965

RESUMEN

BACKGROUND: Sensitive detection and quantification of cerebral glucose is desired. PURPOSE: To quantify cerebral glucose by detecting the H1-α-glucose peak at 5.23 ppm in 1 H magnetic resonance spectroscopy at 7 T. STUDY TYPE: Prospective. SUBJECTS: Twenty-eight non-fasted healthy subjects (aged 20-28 years). FIELD STRENGTH/SEQUENCE: Short echo time stimulated echo acquisition mode (short-TE STEAM) and semi-localized by adiabatic selective refocusing (semi-LASER) at 7 T. ASSESSMENT: Single voxel spectra were obtained from the posterior cingulate cortex (27-mL) using a 32-channel head coil. The H1-α-glucose peak in the spectrum with retrospective removal of the residual water peak was fitted using LCModel with a glucose basis set of only the H1-α-glucose peak. Conventional spectral analysis was performed with a glucose basis set of a full spectral pattern of glucose, also. Fitting precision was evaluated with Cramér-Rao lower bounds (CRLBs). The repeatability of glucose quantification via the semi-LASER sequence was tested. STATISTICAL TESTS: Paired or Welch's t-test were used for normally distributed values. A P value of <0.05 was considered significant. The repeatability of measures was analyzed using coefficient of variation (CV). RESULTS: Removal of the residual water peak improved the flatness and stability of baselines around the H1-α-glucose peak and reduced CRLBs for fitting the H1-α-glucose peak. The semi-LASER sequence was superior to the short-TE STEAM in the higher signal-to-noise ratio of the H1-α-glucose peak (mean ± SD 7.9 ± 2.5, P < 0.001). The conventional analysis overfitted the H1-α-glucose peak. The individual CVs of glucose quantification by detecting the H1-α-glucose peak were smaller than the corresponding CRLBs. DATA CONCLUSION: Cerebral glucose concentration is quantitated to be 1.07 mM by detecting the H1-α-glucose peak in the semi-LASER spectra. Despite requiring long scan times, detecting the H1-α-glucose peak allows true glucose quantification free from the influence of overlapping taurine and macromolecule signals. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Encéfalo , Agua , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Espectroscopía de Resonancia Magnética/métodos , Relación Señal-Ruido , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
4.
J Anat ; 242(2): 174-190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053545

RESUMEN

A precise understanding of human diaphragm development is essential in fetal medicine. To our knowledge, no previous study has attempted a three-dimensional (3-D) analysis and evaluation of diaphragmatic morphogenesis and development from the embryonic to the early fetal period. This study aimed to evaluate the morphogenesis and fibrous architecture of the developing human diaphragm during the late embryonic and early fetal periods. Fifty-seven human embryos and fetuses (crown-rump length [CRL] = 8-88 mm) preserved at the Congenital Anomaly Research Center of Kyoto University and Shimane University were analyzed. 3-D morphogenesis and fiber orientation of the diaphragm were assessed using phase-contrast X-ray computed tomography, T1-weighted magnetic resonance imaging (T1W MRI), and diffusion tensor imaging (DTI). T1W MR images and DTI scans were obtained using a 7-T MR system. The diaphragm was completely closed at Carnegie stage (CS) 20 and gradually developed a dome-like shape. The diaphragm was already in contact with the heart and liver ventrally in the earliest CS16 specimen observed, and the adrenal glands dorsally at CS19 or later. In the fetal period, the diaphragm contacted the gastric fundus in samples with a CRL ≥41 mm, and the spleen in samples with a CRL ≥70 mm. The relative position of the diaphragm with reference to the vertebrae changed rapidly from CS16 to CS19. The most cranial point of the diaphragm was located between the 4th and 8th thoracic vertebrae, regardless of fetal growth, in samples with a CRL of ≥16 mm. Diaphragmatic thickness was nearly uniform (0.15-0.2 mm) across samples with a CRL of 8-41 mm. The sternal, costal, lumbar parts, and the area surrounding the esophageal hiatus thickened with growth in samples with a CRL of ≥46 mm. The thickness at the center of the diaphragm and the left and right hemidiaphragmatic domes did not increase with growth. Tractography showed that the fiber orientation of the sternal, costal, and lumbar parts became more distinct as growth progressed in CS19 or later. All fibers in the costal and lumbar regions ran toward the left and right hemidiaphragmatic domes, except for those running to the caval opening and esophageal hiatus. The fiber orientation patterns from the right and left crura surrounding the esophageal hiatus were classified into three types. Distinct fiber directions between the costal and sternal and between the costal and lumbar diaphragmatic parts were observable in samples with a CRL of ≥46 mm. Anterior costal and sternal fibers ran toward the center. Fiber tracts around the center and the left and right hemidiaphragmatic domes; between the costal and lumbar orientations; and between the costal and sternal orientations showed a tendency for decreasing fractional anisotropy values with fetal growth and showed less density than other areas. In conclusion, we used 3-D thickness assessment and DTI tractography to identify qualitative changes in the muscular and tendonous regions of the diaphragm during the embryonic and early fetal periods. This study provides information on normal human diaphragm development for the progression of fetal medicine and furthering the understanding of congenital anomalies.


Asunto(s)
Diafragma , Imagen de Difusión Tensora , Humanos , Diafragma/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Morfogénesis , Tórax , Feto/diagnóstico por imagen
5.
Cell Mol Life Sci ; 79(9): 483, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972649

RESUMEN

Intractable neuropathic pain following spinal cord injury (NP-SCI) reduces a patient's quality of life. Excessive release of ATP into the extracellular space evokes neuroinflammation via purinergic receptor. Neuroinflammation plays an important role in the initiation and maintenance of NP. However, little is known about whether or not extracellular ATP cause NP-SCI. We found in the present study that excess of intracellular ATP at the lesion site evokes at-level NP-SCI. No significant differences in the body weight, locomotor function, or motor behaviors were found in groups that were negative and positive for at-level allodynia. The intracellular ATP level at the lesion site was significantly higher in the allodynia-positive mice than in the allodynia-negative mice. A metabolome analysis revealed that there were no significant differences in the ATP production or degradation between allodynia-negative and allodynia-positive mice. Dorsal horn neurons in allodynia mice were found to be inactivated in the resting state, suggesting that decreased ATP consumption due to neural inactivity leads to a build-up of intracellular ATP. In contrast to the findings in the resting state, mechanical stimulation increased the neural activity of dorsal horn and extracellular ATP release at lesion site. The forced production of intracellular ATP at the lesion site in non-allodynia mice induced allodynia. The inhibition of P2X4 receptors in allodynia mice reduced allodynia. These results suggest that an excess buildup of intracellular ATP in the resting state causes at-level NP-SCI as a result of the extracellular release of ATP with mechanical stimulation.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Adenosina Trifosfato/metabolismo , Animales , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Ratones , Neuralgia/metabolismo , Calidad de Vida , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
6.
Neurobiol Dis ; 175: 105921, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372289

RESUMEN

Thioredoxin, encoded by Txn1, acts as a critical antioxidant in the defense against oxidative stress by regulating the dithiol/disulfide balance of interacting proteins. The role of thioredoxin in the central nervous system (CNS) is largely unknown. A phenotype-driven study of N-ethyl-N-nitrosourea-mutated rats with wild-running seizures revealed the importance of Txn1 mutations in CNS degeneration. Genetic mapping identified Txn1-F54L in the epileptic rats. The insulin-reducing activity of Txn1-F54L was approximately one-third of that of the wild-type (WT). Bilateral symmetrical vacuolar degeneration in the midbrain, mainly in the thalamus and the inferior colliculus, was observed in the Txn1-F54L rats. The lesions displayed neuronal and oligodendrocytic cell death. Neurons in Txn1-F54L rats showed morphological changes in the mitochondria. Vacuolar degeneration peaked at five weeks of age, and spontaneous repair began at seven weeks. The TUNEL assay showed that fibroblasts derived from homozygotes were susceptible to cell death under oxidative stress. In five-week-old WT rats, energy metabolism in the thalamus was significantly higher than that in the cerebral cortex. In conclusion, in juvenile rats, Txn1 seems to play an essential role in reducing oxidative stress in the midbrains with high energy metabolism.


Asunto(s)
Estrés Oxidativo , Tiorredoxinas , Animales , Ratas , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Estrés Oxidativo/fisiología , Mesencéfalo/metabolismo , Antioxidantes , Oxidación-Reducción
7.
J Anat ; 241(6): 1310-1323, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36123316

RESUMEN

The musculoskeletal system around the human hip joint has acquired a suitable structure for erect bipedal walking. However, little is known about the process of separation and maturation of individual muscles during the prenatal period, when muscle composition is acquired. Understanding the maturation process of the normal musculoskeletal system contributes to elucidating the acquisition of bipedal walking in humans and to predicting normal growth and detecting congenital muscle disorders and anomalies. In this study, we clarify the process of thigh muscle maturation from the embryonic stage to the mid-fetal stage using serial sections, phase-contrast X-ray computed tomography, and magnetic resonance imaging. We also provide a 4D atlas of human thigh muscles between 8 and 23 weeks of gestation. As a result, we first show that muscle separation in the lower thigh tends to progress from the superficial to the deep layers and that all musculoskeletal components are formed by Carnegie Stage 22. Next, we show that femur and muscle volume grow in correlation with crown-rump length. Finally, we show that the anterior, abductor, and posterior muscle groups in the thigh contain a high percentage of monoarticular muscle volume by the end of the embryonic period. This ratio approaches that of adult muscle composition during normal early fetal development and is typical of bipedal walking. This study of fetal muscle composition suggests that preparation for postnatal walking may begin in early fetal period.


Asunto(s)
Hominidae , Muslo , Adulto , Femenino , Animales , Humanos , Embarazo , Muslo/diagnóstico por imagen , Imagenología Tridimensional , Rayos X , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
8.
J Anat ; 241(6): 1287-1302, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35983845

RESUMEN

Rapid shelf elevation and contact of the secondary palate and fusion reportedly occur due to a growth-related equilibrium change in the structures within the oro-nasal cavity. This study aimed to quantitatively evaluate complex three-dimensional morphological changes and their effects on rapid movements, such as shelf elevation and contact, and fusion. Morphological changes during secondary palate formation were analyzed using high-resolution digitalized imaging data (phase-contrast X-ray computed tomography and magnetic resonance images) obtained from 22 human embryonic and fetal samples. The three-dimensional images of the oro-nasal structures, including the maxilla, palate, pterygoid hamulus, tongue, Meckel's cartilage, nasal cavity, pharyngeal cavity, and nasal septum, were reconstructed manually. The palatal shelves were not elevated in all the samples at Carnegie stage (CS)21 and CS22 and in three samples at CS23. In contrast, the palatal shelves were elevated but not in contact in one sample at CS23. Further, the palatal shelves were elevated and fused in the remaining four samples at CS23 and all three samples from the early fetal period. For each sample, 70 landmarks were subjected to Procrustes and principal component (PC) analysis. PC-1 accounted for 67.4% of the extracted gross changes before and after shelf elevations. Notably, the PC-1 values of the negative and positive value groups differed significantly. The PC-2 value changed during the phases in which the change in the PC-1 value was unnaturally slow and stopped at CS22 and the first half of CS23. This period, defined as the "approach period", corresponds to the time before dynamic changes occur as the palatal shelves elevate, the tongue and mandibular tip change their position and shape, and secondary palatal shelves contact and fuse. During the "approach period", measurements of PC-2 changes showed that structures on the mandible (Meckel's cartilage and tongue) and maxilla (palate and nasal cavity) did not change positions, albeit both groups of structures appeared to be compressed anterior-posteriorly. However, during and after shelf elevation, measurements of PC-1 changes showed significant changes between maxillary and mandibular structures, particularly positioning of the shelves above the tongue and protrusion of the tongue and mandible. These results suggest an active role for Meckel's cartilage growth in repositioning the tongue to facilitate shelf elevation. The present data representing three distinct phases of secondary palate closure in humans can advance the understanding of morphological growth changes occurring before and after the horizontal positioning of palatal shelves and their fusion to close the secondary palate in humans successfully.


Asunto(s)
Fisura del Paladar , Hueso Paladar , Humanos , Hueso Paladar/diagnóstico por imagen , Mandíbula , Maxilar , Lengua , Embrión de Mamíferos
9.
J Anat ; 239(2): 498-516, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33754346

RESUMEN

Morphometric analyses in the early foetal phase (9-13 postconceptional week) are critical for evaluating normal brain growth. In this study, we assessed sequential morphological and morphometric changes in the foetal brain during this period using high-resolution T1-weighted magnetic resonance imaging (MRI) scans from 21 samples preserved at Kyoto University. MRI sectional views (coronal, mid-sagittal, and horizontal sections) and 3D reconstructions of the whole brain revealed sequential changes in its external morphology and internal structures. The cerebrum's gross external view, lateral ventricle and choroid plexus, cerebral wall, basal ganglia and thalamus, and corpus callosum were assessed. The development of the cerebral cortex, white matter microstructure, and basal ganglia can be well-characterized using MRI scans. The insula became apparent and deeply impressed as brain growth progressed. A thick, densely packed cellular ventricular/subventricular zone and ganglionic eminence became apparent at high signal intensity. We detected the emergence of important landmarks which may be candidates in the subdivision processes during the early foetal period; the corpus callosum was first detected in the sample with crown-rump length (CRL) 62 mm. A primary sulcus on the medial part of the cortex (cingulate sulcus) was observed in the sample with CRL 114 mm. In the cerebellum, the hemispheres, posterolateral fissure, union of the cerebellar halves, and definition of the vermis were observed in the sample with CRL 43.5 mm, alongside the appearance of a primary fissure in the sample with CRL 56 mm and the prepyramidal fissure in the sample with CRL 75 mm. The volumetric, linear, and angle measurements revealed the comprehensive and regional development, growth, and differentiation of brain structures during the early foetal phase. The early foetal period was neither morphologically nor morphometrically uniform. The cerebral proportion (length/height) and the angle of cerebrum to the standard line at the lateral view of the cerebrum, which may reflect the growth and C-shape formation of the cerebrum, may be a candidate for subdividing the early foetal period. Future precise analyses must establish a staging system for the brain during the early foetal period. This study provides insights into brain structure, allowing for a correlation with functional maturation and facilitating the early detection of brain damage and abnormal development.


Asunto(s)
Encéfalo/embriología , Feto/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética
10.
HPB (Oxford) ; 23(11): 1692-1699, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33958282

RESUMEN

BACKGROUND: Assessing portal vein (PV) hemodynamics is an essential part of liver disease management/liver surgery, yet the optimal methods of assessing intrahepatic PV flow have not yet been established. This study investigated the usefulness of 7-Tesla MRI with hemodynamic analysis for detecting small flow changes within narrow intrahepatic PV branches. METHODS: Flow data in the main PV was obtained by two methods, two-dimensional cine phase contrast-MRI (2D cine PC-MRI) and three-dimensional non-cine phase contrast-MRI (3D PC-MRI). Hemodynamic parameters, such as flow volume rate, flow velocity, and wall shear stress in intrahepatic PV branches were calculated before and after a meal challenge using 3D PC-MRI and hemodynamic analysis. RESULTS: The hemodynamic parameters obtained using 3D PC-MRI and 2D cine PC-MRI were similar. All intrahepatic PV branches were clearly depicted in eight planes, and significant changes in flow volume rate were seen in three planes. Average and maximum velocities, cross-sectional area, and wall shear stress were similar between before and after a meal challenge in all planes. CONCLUSION: 7-Tesla 3D PC-MRI combined with hemodynamic analysis is a promising tool for assessing intrahepatic PV flow and enables future studies in small animals to investigate PV hemodynamics associated with liver disease/postoperative liver recovery.


Asunto(s)
Hidrodinámica , Vena Porta , Velocidad del Flujo Sanguíneo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Vena Porta/diagnóstico por imagen , Vena Porta/cirugía
11.
J Anat ; 234(4): 456-464, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30681143

RESUMEN

The intestine elongates during the early fetal period, herniates into the extraembryonic coelom, and subsequently returns to the abdominal coelom. The manner of herniation is well-known; however, the process by which the intestinal loop returns to the abdomen is not clear. Thus, the present study was designed to document and measure intestinal movements in the early fetal period in three dimensions to elucidate the intestinal loop return process. Magnetic resonance images from human fetuses whose intestinal loops herniated (herniated phase; n = 5) while returning to the abdominal coelom [transition phase; n = 3, crown-rump length (CRL)] 37, 41, and 43 mm] and those whose intestinal loops returned to the abdominal coelom normally (return phase; n = 12) were selected from the Kyoto Collection. Intestinal return began from proximal to distal in samples with CRL of 37 mm. Only the ileum ends were observed in the extraembryonic coelom in samples with CRLs of 41 and 43 mm, whereas the ceca were already located in the abdominal coeloms. The entire intestinal tract had returned to the abdominal coelom in samples with CRL > 43 mm. The intestinal length increased almost linearly with fetal growth irrespective of the phase (R2  = 0.90). The ratio of the intestinal length in the extraembryonic coelom to the entire intestinal length was maximal in samples with CRLs of 32 mm (77%). This ratio rapidly decreased in three of the samples that were in the transition phase. The abdominal volumes increased exponentially (to the third power) during development. The intestinal volumes accounted for 33-41% of the abdominal volumes among samples in the herniated phase. The proportion of the intestine in the abdominal cavity increased, whereas that in the liver decreased, both without any break or plateau. The amount of space available for the intestine by the end of the transition phase was approximately 200 mm3 . The amount of space available for the intestine in the abdominal coelom appeared to be sufficient at the beginning of the return phase in samples with CRLs of approximately 43 mm compared with the maximum intestinal volume available for the extraembryonic coelom in the herniated phase, which was 25.8 mm3 in samples with CRLs of 32 mm. A rapid increase in the space available for the intestine in the abdominal coelom that exceeded the intestinal volume in the extraembryonic coelom generated an inward force, leading to a 'sucked back' mechanism acting as the driving force. The height of the hernia tip increased to 8.9 mm at a maximum fetal CRL of 37 mm. The height of the umbilical ring increased in a stepwise manner between the transition and return phases and its height in the return phase was comparable to or higher than that of the hernia tip during the herniation phase. We surmised that the space was generated in the aforementioned manner to accommodate the herniated portion of the intestine, much like the intestine wrapping into the abdominal coelom as the height of the umbilical ring increased.


Asunto(s)
Desarrollo Fetal , Hernia Umbilical/embriología , Intestinos/embriología , Abdomen/embriología , Femenino , Feto , Humanos , Imagen por Resonancia Magnética
12.
Nanotechnology ; 30(22): 224002, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30743248

RESUMEN

Metal-free magnetic mixed micelles (mean diameter: 16 nm) composed of biocompatible surfactant Tween 80 and hydrophobic pyrrolidine-N-oxyl radical were prepared by mixing them in phosphate-buffered saline. The magnetic mixed micelles were characterized by dynamic light scattering and small angle neutron scattering measurements. The stability of the micelles is found to depend on the length of alkyl side chain in the nitroxide compounds and degree of unsaturation in the hydrophobic chain in the surfactant. The size of the mixed micelle can be tuned by changing the molar ratio of Tween 80 and nitroxyl radical. In view of theranostic application of the micelle, the cytotoxicity and stability in a physiological environment was investigated; the mixed micelle exhibited no cytotoxicity, high colloidal stability and high resistance towards reduction by large excess ascorbic acid. The in vitro and in vivo magnetic resonance imaging (MRI) revealed sufficient contrast enhancement in the proton longitudinal relaxation time (T 1) weighted images. In addition, hydrophobic fluorophores and an anticancer drug are stably encapsulated in the mixed micelles and showed fluorescence (FL) upon reduction by ascorbic acid and cytotoxicity to cancer cells, respectively. For example, the paclitaxel-loaded mixed micelles efficiently suppressed cancer cell growth. Furthermore, they were found to give higher MRI contrast (higher r 1 value) in vitro than the micelles without paclitaxel. The magnetic mixed micelles presented here are promising theranostic agents in nanomedicine due to their high biocompatibility and high resistivity towards reduction as well as functioning as a drug carrier in therapy and MR or FL imaging probe in diagnosis.

13.
Cleft Palate Craniofac J ; 56(8): 1026-1037, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30773047

RESUMEN

BACKGROUND: Congenital midfacial hypoplasia often requires intensive treatments and is a typical condition for the Binder phenotype and syndromic craniosynostosis. The growth trait of the midfacial skeleton during the early fetal period has been assumed to be critical for such an anomaly. However, previous embryological studies using 2-dimensional analyses and specimens during the late fetal period have not been sufficient to reveal it. OBJECTIVE: To understand the morphogenesis of the midfacial skeleton in the early fetal period via 3-dimensional quantification of the growth trait and investigation of the developmental association between the growth centers and midface. METHODS: Magnetic resonance images were obtained from 60 human fetuses during the early fetal period. Three-dimensional shape changes in the craniofacial skeleton along growth were quantified and visualized using geometric morphometrics. Subsequently, the degree of development was computed. Furthermore, the developmental association between the growth centers and the midfacial skeleton was statistically investigated and visualized. RESULTS: The zygoma expanded drastically in the anterolateral dimension, and the lateral part of the maxilla developed forward until approximately 13 weeks of gestation. The growth centers such as the nasal septum and anterior portion of the sphenoid were highly associated with the forward growth of the midfacial skeleton (RV = 0.589; P < .001). CONCLUSIONS: The development of the midface, especially of the zygoma, before 13 weeks of gestation played an essential role in the midfacial development. Moreover, the growth centers had a strong association with midfacial forward growth before birth.


Asunto(s)
Craneosinostosis , Cara , Desarrollo Fetal , Maxilar , Desarrollo Maxilofacial , Cara/embriología , Femenino , Humanos , Maxilar/embriología , Maxilar/crecimiento & desarrollo , Morfogénesis , Embarazo , Cigoma
14.
Chembiochem ; 18(10): 951-959, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28198587

RESUMEN

Two features of meso-Aryl-substituted expanded porphyrins suggest suitability as theranostic agents. They have excellent absorption in near infrared (NIR) region, and they offer the possibility of introduction of multiple fluorine atoms at structurally equivalent positions. Here, hexaphyrin (hexa) was synthesized from 2,6-bis(trifluoromethyl)-4-formyl benzoate and pyrrole and evaluated as a novel expanded porphyrin with the above features. Under NIR illumination hexa showed intense photothermal and weak photodynamic effects, which were most likely due to its low excited states, close to singlet oxygen. The sustained photothermal effect caused ablation of cancer cells more effectively than the photodynamic effect of indocyanine green (a clinical dye). In addition, hexa showed potential for use in the visualization of tumors by 19 F magnetic resonance imaging (MRI), because of the multiple fluorine atoms. Our results strongly support the utility of expanded porphyrins as theranostic agents in both photothermal therapy and 19 F MRI.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19/métodos , Hipertermia Inducida , Fototerapia , Porfirinas/química , Neoplasias de la Vejiga Urinaria/terapia , Supervivencia Celular , Humanos , Espectroscopía Infrarroja Corta , Nanomedicina Teranóstica , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
15.
Magn Reson Med ; 78(2): 721-729, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27689918

RESUMEN

PURPOSE: The purpose of this work was to investigate disease progression and treatment response in a murine model of chronic obstructive pulmonary disease (COPD) using a preclinical hyperpolarized 129 Xe (HPXe) magnetic resonance imaging (MRI) strategy. METHODS: COPD phenotypes were induced in 32 mice by 10 weeks of exposure to cigarette smoke (CS) and lipopolysaccharide (LPS). Efficacy of ethyl pyruvate (EP), an anti-inflammatory drug, was investigated by administering EP to 16 of the 32 mice after 6 weeks of CS and LPS exposure. HPXe MRI was performed to monitor changes in pulmonary function during disease progression and pharmacological therapy. RESULTS: HPXe metrics of fractional ventilation and gas-exchange function were significantly reduced after 6 weeks of CS and LPS exposure compared to sham-instilled mice administered with saline (P < 0.05). After this observation, EP administration was started in 16 of the 32 mice and continued for 4 weeks. EP was found to improve HPXe MRI metrics to a similar level as in sham-instilled mice (P < 0.01). Histological analysis showed significant alveolar tissue destruction in the COPD group, but relatively normal alveolar structure in the EP and sham-instilled groups. CONCLUSION: This study demonstrates the potential efficacy of EP for COPD therapy, as assessed by a noninvasive, translatable 129 Xe MRI procedure. Magn Reson Med 78:721-729, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Antiinflamatorios/uso terapéutico , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica , Piruvatos/uso terapéutico , Isótopos de Xenón/química , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Ratones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
16.
Prenat Diagn ; 37(9): 907-915, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28675493

RESUMEN

OBJECTIVES: Disturbance of the development of the nasal septum in the early prenatal period causes congenital facial anomalies characterized by a flat nose and defects of the anterior nasal spine (ANS), such as Binder phenotype. The present research aimed to assess the development of the nasal septum and the ANS with growth in the early prenatal period. METHODS: Magnetic resonance images were obtained from 56 specimens. Mid-sagittal images were analyzed by using geometric morphometrics for the development of the nasal septum, and angle analysis was performed for the development of the ANS. Additionally, we calculated and visualized the ontogenetic allometry of the nasal septum. RESULTS: Our results showed that the nasal septum changed shape in the anteroposterior direction in smaller specimens, while it maintained an almost isometric shape in larger specimens. Furthermore, mathematical evidence revealed that the maturation periods of the shapes of the ANS and the nasal septum were around 12 and 14 weeks of gestation, respectively. CONCLUSION: The anteroposterior development of the nasal septum is specific until 14 weeks of gestation, and it is important for nasal protrusion and the development of the ANS. Therefore, the disturbance of such development could induce low nasal deformity, including Binder phenotype. © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Imagen por Resonancia Magnética , Tabique Nasal/embriología , Nariz/anomalías , Femenino , Edad Gestacional , Humanos , Fenotipo , Embarazo
17.
Dev Dyn ; 245(2): 123-31, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26509917

RESUMEN

BACKGROUND: After palatoplasty, incomplete velopharyngeal closure in speech articulation sometimes persists, despite restoration of deglutition function. The levator veli palatini (LVP) is believed to be significantly involved with velopharyngeal function in articulation; however, the development and innervation of LVP remain obscure. The development of LVP in human embryos and fetuses has not been systematically analyzed using the Carnegie stage (CS) to standardize documentation of development. RESULTS: The anlage of LVP starts to develop at CS 21 beneath the aperture of the auditory tube (AT) to the pharynx. At CS 23, LVP runs along AT over its full length, as evidenced by three-dimensional image reconstruction. In the fetal stage, the lesser palatine nerve (LPN) is in contact with LVP. CONCLUSIONS: The positional relationship between LVP and AT three-dimensionally, suggesting that LVP might be derived from the second branchial arch. Based on histological evidence, we hypothesize that motor components from the facial nerve may run along LPN, believed to be purely sensory. The multiple innervation of LVP by LPN and pharyngeal plexus may explain the postpalatoplasty discrepancy between the partial impairment in articulation vs. the functional restoration of deglutition. That is, the contribution of LPN is greater in articulation than in deglutition.


Asunto(s)
Fisura del Paladar/patología , Músculos Palatinos/embriología , Hueso Paladar/embriología , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Músculos Palatinos/inervación , Músculos Palatinos/patología
18.
NMR Biomed ; 29(10): 1414-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27526627

RESUMEN

The use of a quenching gas, isobutene, with a low vapor pressure was investigated to enhance the utility of hyperpolarized (129) Xe (HP Xe) MRI. Xenon mixed with isobutene was hyperpolarized using a home-built apparatus for continuously producing HP Xe. The isobutene was then readily liquefied and separated almost totally by continuous condensation at about 173 K, because the vapor pressure of isobutene (0.247 kPa) is much lower than that of Xe (157 kPa). Finally, the neat Xe gas was continuously delivered to mice by spontaneous inhalation. The HP Xe MRI was enhanced twofold in polarization level and threefold in signal intensity when isobutene was adopted as the quenching gas instead of N2 . The usefulness of the HP Xe MRI was verified by application to pulmonary functional imaging of spontaneously breathing mice, where the parameters of fractional ventilation (ra ) and gas exchange (fD ) were evaluated, aiming at future extension to preclinical studies. This is the first application of isobutene as a quenching gas for HP Xe MRI.


Asunto(s)
Alquenos/farmacocinética , Aumento de la Imagen/métodos , Pulmón/fisiología , Imagen por Resonancia Magnética/métodos , Intercambio Gaseoso Pulmonar/fisiología , Isótopos de Xenón/farmacocinética , Administración por Inhalación , Alquenos/administración & dosificación , Animales , Medios de Contraste , Gases , Interpretación de Imagen Asistida por Computador/métodos , Pulmón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos , Radiofármacos/administración & dosificación , Radiofármacos/farmacología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Isótopos de Xenón/administración & dosificación
19.
J Am Chem Soc ; 137(2): 799-806, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25560796

RESUMEN

Polymers are concentration-amplified with respect to the monomeric units. We show here that a phosphorylcholine polymer enriched with (13)C/(15)N at the methyl groups is self-traceable by multiple-resonance (heteronuclear-correlation) NMR in tumor-bearing mice inoculated with the mouse rectal cancer cell line (colon 26). Preliminary measurements indicated that the present polymeric nanoprobe was satisfactorily distinguished from lipids and detectable with far sub-micromolar spectroscopic and far sub-millimolar imaging sensitivities. Detailed ex vivo and in vivo studies for the tumor-bearing mice administered the probe with a mean molecular weight of 63,000 and a mean size of 13 nm, revealed the following: (1) this probe accumulates in the tumor highly selectively (besides renal excretion) and efficiently (up to 30% of the injected dose), (2) the tumor can thus be clearly in vivo imaged, the lowest clearly imageable dose of the probe being 100 mg/kg or 2.0 mg/20-g mouse, and (3) the competition between renal excretion and tumor accumulation is size-controlled; that is, the larger (higher molecular-weight) and smaller (lower molecular-weight) portions of the probe undergo tumor accumulation and renal excretion, respectively. The observed size dependence suggests that the efficient tumor-targeting of the present probe is stimulated primarily by the so-called enhanced permeability and retention (EPR) effect, that is, size-allowed invasion of the probe into the tumor tissue via defective vascular wall. Self-traceable polymers thus open an important area of magnetic resonance imaging (MRI) of tumors and may provide a highly potential tool to visualize various delivery/localization processes using synthetic polymers.


Asunto(s)
Neoplasias del Colon/diagnóstico , Neoplasias del Colon/metabolismo , Imagen por Resonancia Magnética , Fosforilcolina/química , Fosforilcolina/metabolismo , Polímeros/metabolismo , Animales , Línea Celular Tumoral , Ratones
20.
NMR Biomed ; 28(1): 24-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25312654

RESUMEN

The feasibility of ventilation imaging with hyperpolarized (HP) (129) Xe MRI has been investigated for quantitative and regional assessment of ventilation in spontaneously breathing mice. The multiple breath ventilation imaging technique was modified to the protocol of spontaneous inhalation of HP (129) Xe delivered continuously from a (129) Xe polarizer. A series of (129) Xe ventilation images was obtained by varying the number of breaths before the (129) Xe lung imaging. The fractional ventilation, r, was successfully evaluated for spontaneously breathing mice. An attempt was made to detect ventilation dysfunction in the emphysematous mouse lung induced by intratracheal administration of porcine pancreatic elastase (PPE). As a result, the distribution of fractional ventilation could be visualized by the r map. Significant dysfunction of ventilation was quantitatively identified in the PPE-treated group. The whole-lung r value of 0.34 ± 0.01 for control mice (N = 4) was significantly reduced, to 0.25 ± 0.07, in PPE-treated mice (N = 4) (p = 0.038). This study is the first application of multiple breath ventilation imaging to spontaneously breathing mice, and shows that this methodology is sensitive to differences in the pulmonary ventilation. This methodology is expected to improve simplicity as well as noninvasiveness when assessing regional ventilation in small rodents.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Ventilación Pulmonar/fisiología , Respiración , Animales , Pulmón/fisiología , Masculino , Ratones Endogámicos C57BL , Procesamiento de Señales Asistido por Computador , Isótopos de Xenón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA