Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Angew Chem Int Ed Engl ; 63(23): e202400476, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38656762

RESUMEN

The novel hetero-dinuclear complex trans,trans,trans-[PtIV(py)2(N3)2(OH)(µ-OOCCH2CH2CONHCH2-bpyMe)IrIII(ppy)2]Cl (Pt-Ir), exhibits charge transfer between the acceptor photochemotherapeutic Pt(IV) (Pt-OH) and donor photodynamic Ir(III) (Ir-NH2) fragments. It is stable in the dark, but undergoes photodecomposition more rapidly than the Pt(IV) parent complex (Pt-OH) to generate Pt(II) species, an azidyl radical and 1O2. The Ir(III)* excited state, formed after irradiation, can oxidise NADH to NAD⋅ radicals and NAD+. Pt-Ir is highly photocytotoxic towards cancer cells with a high photocytotoxicity index upon irradiation with blue light (465 nm, 4.8 mW/cm2), even with short light-exposure times (10-60 min). In contrast, the mononuclear Pt-OH and Ir-NH2 subunits and their simple mixture are much less potent. Cellular Pt accumulation was higher for Pt-Ir compared to Pt-OH. Irradiation of Pt-Ir in cancer cells damages nuclei and releases chromosomes. Synchrotron-XRF revealed ca. 4× higher levels of intracellular platinum compared to iridium in Pt-Ir treated cells under dark conditions. Luminescent Pt-Ir distributes over the whole cell and generates ROS and 1O2 within 1 h of irradiation. Iridium localises strongly in small compartments, suggestive of complex cleavage and excretion via recycling vesicles (e.g. lysosomes). The combination of PDT and PACT motifs in one molecule, provides Pt-Ir with a novel strategy for multimodal phototherapy.


Asunto(s)
Antineoplásicos , Iridio , Fotoquimioterapia , Fármacos Fotosensibilizantes , Platino (Metal) , Iridio/química , Iridio/farmacología , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Platino (Metal)/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular , Supervivencia Celular/efectos de los fármacos
2.
Inorg Chem ; 62(50): 20745-20753, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37643591

RESUMEN

A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.


Asunto(s)
Compuestos Férricos , Radioisótopos de Galio , Animales , Humanos , Ratones , Distribución Tisular , Medicina de Precisión , Tomografía de Emisión de Positrones , Fototerapia , Línea Celular Tumoral , Circonio
3.
Molecules ; 28(20)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37894695

RESUMEN

KP46 (tris(hydroxyquinolinato)gallium(III)) is an experimental, orally administered anticancer drug. Its absorption, delivery to tumours, and mode of action are poorly understood. We aimed to gain insight into these issues using gallium-67 and gallium-68 as radiotracers with SPECT and PET imaging in mice. [67Ga]KP46 and [68Ga]KP46, compared with [68Ga]gallium acetate, were used for logP measurements, in vitro cell uptake studies in A375 melanoma cells, and in vivo imaging in mice bearing A375 tumour xenografts up to 48 h after intravenous (tracer level) and oral (tracer and bulk) administration. 68Ga was more efficiently accumulated in A375 cells in vitro when presented as [68Ga]KP46 than as [68Ga]gallium acetate, but the reverse was observed when intravenously administered in vivo. After oral administration of [68/67Ga]KP46, absorption of 68Ga and 67Ga from the GI tract and delivery to tumours were poor, with the majority excreted in faeces. By 48 h, low but measurable amounts were accumulated in tumours. The distribution in tissues of absorbed radiogallium and octanol extraction of tissues suggested trafficking as free gallium rather than as KP46. We conclude that KP46 likely acts as a slow releaser of gallium ions which are inefficiently absorbed from the GI tract and trafficked to tissues, including tumour and bone.


Asunto(s)
Antineoplásicos , Galio , Neoplasias , Compuestos Organometálicos , Humanos , Animales , Ratones , Radioisótopos de Galio/uso terapéutico , Galio/farmacología , Compuestos Organometálicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Acetatos/uso terapéutico
4.
J Am Chem Soc ; 143(48): 20224-20240, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808054

RESUMEN

The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Profármacos/farmacología , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/efectos de la radiación , Humanos , Luz , Células PC-3 , Platino (Metal)/química , Platino (Metal)/efectos de la radiación , Profármacos/química , Profármacos/efectos de la radiación , Análisis de la Célula Individual
5.
Chemistry ; 27(41): 10711-10716, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34046954

RESUMEN

Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Línea Celular Tumoral , ADN , Femenino , Humanos , Luz , Compuestos Organoplatinos , Platino (Metal)
6.
Eur J Inorg Chem ; 2020(11-12): 1052-1060, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33776557

RESUMEN

We report the synthesis, characterisation and cytotoxicity of six cyclometalated rhodium(III) complexes [CpXRh(C^N)Z]0/+, in which CpX = Cp*, Cpph, or Cpbiph, C^N = benzo[h]quinoline, and Z = chloride or pyridine. Three x-ray crystal structures showing the expected "piano-stool" configurations have been determined. The chlorido complexes hydrolysed faster in aqueous solution, also reacted preferentially with 9-ethyl guanine or glutathione compared to their pyridine analogues. The 1-biphenyl-2,3,4,5,-tetramethylcyclopentadienyl complex [CpbiphRh(benzo[h]quinoline)Cl] (3a) was the most efficient catalyst in coenzyme reduced nicotinamide adenine dinucleotide (NADH) oxidation to NAD+ and induced an elevated level of reactive oxygen species (ROS) in A549 human lung cancer cells. The pyridine complex [CpbiphRh(benzo[h]quinoline)py]+ (3b) was the most potent against A549 lung and A2780 ovarian cancer cell lines, being 5-fold more active than cisplatin towards A549 cells, and acted as a ROS scavenger. This work highlights a ligand-controlled strategy to modulate the reactivity and cytotoxicity of cyclometalated rhodium anticancer complexes.

7.
Inorganica Chim Acta ; 503: 119396, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33776131

RESUMEN

We report the synthesis and characterization of novel pentamethylcyclopentadienyl (Cp*) iridium(III) complexes [(Cp*)Ir(4-methyl-4'-carboxy-2,2'-bipyridine)Cl]PF6 (Ir-I), the product (Ir-II) from amide coupling of Ir-I to dibenzocyclooctyne-amine, and its conjugate (Ir-CP) with the cyclic nona-peptide c(CRWYDENAC). The familiar three-legged 'piano-stool' configuration for complex Ir-I was confirmed by its single crystal X-ray structure. Significantly, copper-free click strategy has been developed for site-specific conjugation of the parent complex Ir-I to the tumour targeting nona-cyclic peptide. The approach consisted of two steps: (i) the carboxylic acid group of the bipyridine ligand in complex Ir-I was first attached to an amine functionalized dibenzocyclooctyne group via amide formation to generate complex Ir-II; and (ii) the alkyne bond of dibenzocyclooctyne in complex Ir-II underwent a subsequent strain-promoted copper-free cycloaddition with the azide group of the modified peptide. Interestingly, while complex Ir-I was inactive towards A2780 human ovarian cancer cells, complex Ir-II exhibited moderate cytotoxic activity. Targeted complexes such as Ir-CP offer scope for enhanced activity and selectivity of this class of anticancer complexes.

8.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098299

RESUMEN

Pretargeting is widely explored in immunoPET as a strategy to reduce radiation exposure of non-target organs and allow the use of short-lived radionuclides that would not otherwise be compatible with the slow pharmacokinetic profiles of antibodies. Here we investigate a pretargeting strategy based on gallium-68 and the chelator THPMe as a high-affinity pair capable of combining in vivo. After confirming the ability of THPMe to bind 68Ga in vivo at low concentrations, the bifunctional THPMe-NCS was conjugated to a humanised huA33 antibody targeting the A33 glycoprotein. Imaging experiments performed in nude mice bearing A33-positive SW1222 colorectal cancer xenografts compared pretargeting (100 µg of THPMe-NCS-huA33, followed after 24 h by 8-10 MBq of 68Ga3+) with both a directly labelled radioimmunoconjugate (89Zr-DFO-NCS-huA33, 88 µg, 7 MBq) and a 68Ga-only negative control (8-10 MBq of 68Ga3+). Imaging was performed 25 h after antibody administration (1 h after 68Ga3+ administration for negative control). No difference between pretargeting and the negative control was observed, suggesting that pretargeting via metal chelation is not feasible using this model. However, significant accumulation of "unchelated" 68Ga3+ in the tumour was found (12.9 %ID/g) even without prior administration of THPMe-NCS-huA33, though tumour-to-background contrast was impaired by residual activity in the blood. Therefore, the 68Ga-only experiment was repeated using THPMe (20 µg, 1 h after 68Ga3+ administration) to clear circulating 68Ga3+, producing a three-fold improvement of the tumour-to-blood activity concentration ratio. Although preliminary, these results highlight the potential of THPMe as a 68Ga clearing agent in imaging applications with gallium citrate.


Asunto(s)
Anticuerpos/metabolismo , Quelantes/farmacocinética , Inmunoconjugados/farmacocinética , Radiofármacos/farmacocinética , Animales , Anticuerpos/química , Línea Celular Tumoral , Quelantes/química , Femenino , Radioisótopos de Galio/química , Radioisótopos de Galio/metabolismo , Radioisótopos de Galio/farmacocinética , Xenoinjertos , Humanos , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Tasa de Depuración Metabólica , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/metabolismo , Distribución Tisular
9.
Angew Chem Int Ed Engl ; 59(1): 61-73, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31310436

RESUMEN

In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.


Asunto(s)
Complejos de Coordinación/química , Metales/química , Fotoquimioterapia/métodos , Humanos
10.
Angew Chem Int Ed Engl ; 58(8): 2350-2354, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30552796

RESUMEN

An organoiridium-albumin bioconjugate (Ir1-HSA) was synthesized by reaction of a pendant maleimide ligand with human serum albumin. The phosphorescence of Ir1-HSA was enhanced significantly compared to parent complex Ir1. The long phosphorescence lifetime and high 1 O2 quantum yield of Ir1-HSA are highly favorable properties for photodynamic therapy. Ir1-HSA mainly accumulated in the nucleus of living cancer cells and showed remarkable photocytotoxicity against a range of cancer cell lines and tumor spheroids (light IC50 ; 0.8-5 µm, photo-cytotoxicity index PI=40-60), while remaining non-toxic to normal cells and normal cell spheroids, even after photo-irradiation. This nucleus-targeting organoiridium-albumin is a strong candidate photosensitizer for anticancer photodynamic therapy.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Iridio/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Albúmina Sérica Humana/metabolismo , Células A549 , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Iridio/química , Modelos Moleculares , Estructura Molecular , Imagen Óptica , Fármacos Fotosensibilizantes/química , Albúmina Sérica Humana/química , Relación Estructura-Actividad
11.
Bioconjug Chem ; 28(2): 481-495, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27966893

RESUMEN

Tris(hydroxypyridinone) chelators conjugated to peptides can rapidly complex the positron-emitting isotope gallium-68 (68Ga) under mild conditions, and the resulting radiotracers can delineate peptide receptor expression at sites of diseased tissue in vivo. We have synthesized a dendritic bifunctional chelator containing nine 1,6-dimethyl-3-hydroxypyridin-4-one groups (SCN-HP9) that can coordinate up to three Ga3+ ions. This derivative has been conjugated to a trimeric peptide (RGD3) containing three peptide groups that target the αvß3 integrin receptor. The resulting dendritic compound, HP9-RGD3, can be radiolabeled in 97% radiochemical yield at a 3-fold higher specific activity than its homologues HP3-RGD and HP3-RGD3 that contain only a single metal binding site. PET scanning and biodistribution studies show that [68Ga(HP9-RGD3)] demonstrates higher receptor-mediated tumor uptake in animals bearing U87MG tumors that overexpress αvß3 integrin than [68Ga(HP3-RGD)] and [68Ga(HP3-RGD3)]. However, concomitant nontarget organ retention of [68Ga(HP9-RGD3)] results in low tumor to nontarget organ contrast in PET images. On the other hand, the trimeric peptide homologue containing a single tris(hydroxypyridinone) chelator, [68Ga(HP3-RGD3)], clears nontarget organs and exhibits receptor-mediated uptake in mice bearing tumors and in mice with induced rheumatoid arthritis. PET imaging with [68Ga(HP3-RGD3)] enables clear delineation of αvß3 integrin receptor expression in vivo.


Asunto(s)
Quelantes/química , Radioisótopos de Galio/química , Integrina alfaVbeta3/análisis , Oligopéptidos/química , Tomografía de Emisión de Positrones/métodos , Piridinas/química , Animales , Artritis Reumatoide/diagnóstico por imagen , Quelantes/farmacocinética , Femenino , Radioisótopos de Galio/farmacocinética , Articulaciones/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/diagnóstico por imagen , Oligopéptidos/farmacocinética , Piridinas/farmacocinética , Distribución Tisular
12.
Int J Mol Sci ; 18(1)2017 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-28075350

RESUMEN

Derivatives of 3,4-hydroxypyridinones have been extensively studied for in vivo Fe3+ sequestration. Deferiprone, a 1,2-dimethyl-3,4-hydroxypyridinone, is now routinely used for clinical treatment of iron overload disease. Hexadentate tris(3,4-hydroxypyridinone) ligands (THP) complex Fe3+ at very low iron concentrations, and their high affinities for oxophilic trivalent metal ions have led to their development for new applications as bifunctional chelators for the positron emitting radiometal, 68Ga3+, which is clinically used for molecular imaging in positron emission tomography (PET). THP-peptide bioconjugates rapidly and quantitatively complex 68Ga3+ at ambient temperature, neutral pH and micromolar concentrations of ligand, making them amenable to kit-based radiosynthesis of 68Ga PET radiopharmaceuticals. 68Ga-labelled THP-peptides accumulate at target tissue in vivo, and are excreted largely via a renal pathway, providing high quality PET images.


Asunto(s)
Quelantes/farmacología , Radioisótopos de Galio/química , Hierro/metabolismo , Tomografía de Emisión de Positrones , Piridonas/farmacología , Radiofármacos/farmacología , Animales , Humanos , Piridonas/química
13.
Bioconjug Chem ; 27(2): 309-18, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26286399

RESUMEN

Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with (68)Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced (68)Ga(3+) in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60-80 MBq nmol(-1). Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new (68)Ga(3+)-labeled THP peptide conjugates retain affinity for the αvß3 integrin receptor, clear within 1-2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of (68)Ga biomolecules under mild conditions suitable for peptides and proteins.


Asunto(s)
Quelantes/química , Radioisótopos de Galio/química , Isotiocianatos/química , Tomografía de Emisión de Positrones , Piridonas/química , Animales , Quelantes/metabolismo , Quelantes/farmacocinética , Radioisótopos de Galio/metabolismo , Radioisótopos de Galio/farmacocinética , Integrina alfaVbeta3/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/farmacocinética , Tomografía de Emisión de Positrones/métodos , Piridonas/metabolismo , Piridonas/farmacocinética , Distribución Tisular
14.
Chem Sci ; 15(11): 4121-4134, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487220

RESUMEN

Photoactive prodrugs offer potential for spatially-selective antitumour activity with minimal effects on normal tissues. Excited-state chemistry can induce novel effects on biochemical pathways and combat resistance to conventional drugs. Photoactive metal complexes in particular, have a rich and relatively unexplored photochemistry, especially an ability to undergo facile intersystem crossing and populate triplet states. We have conjugated the photoactive octahedral Pt(iv) complex trans, trans, trans-[Pt(N3)2(OH)2(py)2] to ferrocene to introduce novel features into a candidate photochemotherapeutic drug. The X-ray crystal structure of the conjugate Pt-Fe confirmed the axial coordination of a ferrocene carboxylate, with Pt(iv) and Fe(ii) 6.07 Å apart. The conjugation of ferrocene red-shifted the absorption spectrum and ferrocene behaves as a light antenna allowing charge transfer from iron to platinum, promoting the photoactivation of Pt-Fe with light of longer wavelength. Cancer cellular accumulation is enhanced, and generation of reactive species is catalysed after photoirradiation, introducing ferroptosis as a contribution towards the cell-death mechanism. TDDFT calculations were performed to shed light on the behaviour of Pt-Fe when it is irradiated. Intersystem spin-crossing allows the formation of triplet states centred on both metal atoms. The dissociative nature of triplet states confirms that they can be involved in ligand detachment due to irradiation. The Pt(ii) photoproducts mainly retain the trans-{Pt(py)2}2+fragment. Visible light irradiation gives rise to micromolar activity for Pt-Fe towards ovarian, lung, prostate and bladder cancer cells under both normoxia and hypoxia, and some photoproducts appear to retain Pt(iv)-Fe(ii) conjugation.

15.
J Nucl Med ; 65(7): 1043-1050, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782457

RESUMEN

The incidence of androgen receptor (AR)-negative (AR-) prostate cancer, including aggressive neuroendocrine prostate cancer (NEPC), has more than doubled in the last decade, but its timely diagnosis is difficult as it lacks typical prostate cancer hallmarks. The carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) has recently been identified as an upregulated surface antigen in NEPC. We developed an immuno-PET agent targeting CEACAM5 and evaluated its ability to delineate AR- prostate cancer in vivo. Methods: CEACAM5 expression was evaluated in a panel of prostate cancer cell lines by immunohistochemistry and Western blotting. The CEACAM5-targeting antibody labetuzumab was conjugated with the chelator desferrioxamine (DFO) and radiolabeled with 89Zr. The in vivo distribution of the radiolabeled antibody was evaluated in xenograft prostate cancer models by PET imaging and ex vivo organ distribution. Results: The NEPC cell line H660 exhibited strong CEACAM5 expression, whereas expression was limited in the AR- cell lines PC3 and DU145 and absent in the AR-positive cell line LNCaP. [89Zr]Zr-DFO-labetuzumab imaging was able to clearly delineate both neuroendocrine H660 xenografts and AR- DU145 in vivo but could not detect the AR-positive xenograft LNCaP. Conclusion: Immuno-PET imaging with [89Zr]Zr-DFO-labetuzumab is a promising diagnostic tool for AR- prostate cancer.


Asunto(s)
Proteínas Ligadas a GPI , Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Animales , Ratones , Receptores Androgénicos/metabolismo , Proteínas Ligadas a GPI/metabolismo , Antígenos CD/metabolismo , Circonio , Distribución Tisular , Moléculas de Adhesión Celular/metabolismo , Radioisótopos , Antígeno Carcinoembrionario
16.
Dalton Trans ; 51(42): 16070-16081, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36043856

RESUMEN

We have studied activation of the methyl C-H bonds in the cyclopentadienyl ligands of half-sandwich Rh(III) complexes [η5-CpXRh(N,N')Cl]+ by observing the dependence of sequential H/D exchange on variations in CpX = Cp* (complexes 1 and 2), Me4PhCp (CpXPh, 3) or Me4PhPhCp (CpXPhPh, 4), and chelated ligand N,N' (bpy, 1; phen, 2-4). H/D exchange was fastest in d4-MeOD (t1/2 = 10 min, 37 °C, complex 1), no H/D exchange was observed in DMSO/D2O, and d4-MeOD enhanced the rate in CD3CN. The proposed Rh(I)-fulvene intermediate was trapped by [4 + 2] Diels-Alder reactions with conjugated dienes and characterized. The Rh(I) oxidation state was confirmed by X-ray photoelectron spectroscopy (XPS). Influence of solvent on the mechanisms of activation and Diels-Alder adduct formation was modelled using DFT calculations with the CAM-B3LYP functional and CEP-31 g basis set, and influence on the reaction profile of the dimiine ligand and phenyl substituent using the larger qzvp basis set. The Rh(III)-OH intemediate is stabilised by H-bonding with methanol and a Cp* CH3 hydrogen. The Rh(I)(Me4fulvene) species, stabilised by interaction of methanol with a coordinated water, again by two H-bonds H2O-HOMe (1.49 Å) and fulvene CH2 (1.94 Å), arises from synchronous transfer of the methanol OH proton to a Rh(III)-OH ligand and Cp* methyl hydrogen to the methanol oxygen. Additionally, the observed trend in catalytic activity for complexes 1-4 was reproduced by DFT calculations. These complexes form a novel class of catalytic molecular motors with a tunable rate of operation that can be stalled in a given state. They provide a basis for elucidation of the effects of ligand design on the contributions of electronic, rotational and vibrational energies to each step in the reaction pathway at the atomic level, consideration of which will enhance the design principles for the next generation of molecular machines.

17.
Chem Commun (Camb) ; 57(62): 7645-7648, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34250984

RESUMEN

The novel Pt(iv) complex trans,trans-[Pt(N3)2(Py)2(OH)(OCO-(PEG)2-NHCSNH-Ph-NCS)] (Pt4) conjugates to the side chain of lysine amino acids in proteins under mild conditions. Reaction with myoglobin generated a bioconjugate that was stable in the dark, but released a Pt(iv) prodrug upon visible light irradiation. A similar procedure was used to conjugate Pt4 to the antibody trastuzumab, resulting in the first photoactivatable Pt(iv)-antibody conjugate, demonstrating potential for highly selective cancer phototherapy.

18.
Nucl Med Biol ; 98-99: 18-29, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33964707

RESUMEN

In oncology, the holy grail of radiotherapy is specific radiation dose deposition in tumours with minimal healthy tissue toxicity. If used appropriately, injectable, systemic radionuclide therapies could meet these criteria, even for treatment of micrometastases and single circulating tumour cells. The clinical use of α and ß- particle-emitting molecular radionuclide therapies is rising, however clinical translation of Auger electron-emitting radionuclides is hampered by uncertainty around their exact subcellular localisation, which in turn affects the accuracy of dosimetry. This review aims to discuss and compare the advantages and disadvantages of various subcellular localisation methods available to localise radiopharmaceuticals and radionuclides for in vitro investigations.


Asunto(s)
Partículas alfa , Dosis de Radiación , Radiofármacos
19.
Nucl Med Biol ; 100-101: 36-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34153932

RESUMEN

INTRODUCTION: The biological consequences of absorbed radiation doses are ill-defined for radiopharmaceuticals, unlike for external beam radiotherapy (EBRT). A reliable assay that assesses the biological consequences of any radionuclide is much needed. Here, we evaluated the cell-free plasmid DNA assay to determine the relative biological effects of radionuclides such as Auger electron-emitting [67Ga]GaCl3 or [111In]InCl3 compared to EBRT. METHODS: Supercoiled pBR322 plasmid DNA (1.25 or 5 ng/µL) was incubated with 0.5 or 1 MBq [67Ga]GaCl3 or [111In]InCl3 for up to 73 h or was exposed to EBRT (137Cs; 5 Gy/min; 0-40 Gy). The induction of relaxed and linear plasmid DNA, representing single and double strand breaks, respectively, was assessed by gel electrophoresis. Chelated forms of 67Ga were also investigated using DOTA and THP. Topological conversion rates for supercoiled-to-relaxed (ksrx) or relaxed-to-linear (krlx) DNA were obtained by fitting a kinetic model. RESULTS: DNA damage increased both with EBRT dose and incubation time for [67Ga]GaCl3 and [111In]InCl3. Damage caused by [67Ga]GaCl3 decreased when chelated. [67Ga]GaCl3 proved more damaging than [111In]InCl3; 1.25 ng/µL DNA incubated with 0.5 MBq [67Ga]GaCl3 for 2 h led to a 70% decrease of intact plasmid DNA as opposed to only a 19% decrease for [111In]InCl3. For both EBRT and radionuclides, conversion rates were slower for 5 ng/µL than 1.25 ng/µL plasmid DNA. DNA damage caused by 1 Gy EBRT was the equivalent to damage caused by 0.5 MBq unchelated [67Ga]GaCl3 and [111In]InCl3 after 2.05 ± 0.36 and 9.3 ± 0.77 h of incubation, respectively. CONCLUSIONS: This work has highlighted the power of the plasmid DNA assay for a rapid determination of the relative biological effects of radionuclides compared to external beam radiotherapy. It is envisaged this approach will enable the systematic assessment of imaging and therapeutic radionuclides, including Auger electron-emitters, to further inform radiopharmaceutical design and application.


Asunto(s)
Radioisótopos de Galio
20.
Inorg Chem Front ; 7(19): 3533-3540, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33786191

RESUMEN

Mono-axial functionalised octahedral diazido Pt(iv) complexes trans, trans, trans-[Pt(py)2(N3)2(OR1)(OR2)] (OR1 = OH and OR2 = anticancer agent coumarin-3 carboxylate (cou, 2a), pyruvate dehydrogenase kinase (PDK) inhibitors 4-phenylbutyrate (PhB, 2b) or dichloroacetate (DCA, 2c)), and their di-axial functionalised analogues with OR1 = DCA and OR2 = cou (3a), PhB (3b), or DCA (3c) have been synthesised and characterised, including the X-ray crystal structures of complexes 2a, 3a, 3b and 3c. These complexes exhibit dark stability and have the potential to generate cytotoxic Pt(ii) species and free radicals selectively in cancer cells when irradiated. Mono-functionalised complexes 2a-2c showed higher aqueous solubility and more negative reduction potentials. Mono- and di-functionalised complexes displayed higher photocytotoxicity with blue light (1 h, 465 nm, 4.8 mW cm-2) than the parent dihydroxido complex 1 (OR1 = OR2 = OH) in A2780 human ovarian (IC50 0.9-2.9 µM for 2a-2c; 0.11-0.39 µM for 3a-3c) and A549 human lung cancer cells (5.4-7.8 µM for 2a-2c; 1.2-2.6 µM for 3a-3c) with satisfactory dark stability. Notably, no apparent dark cytotoxicity was observed in healthy lung MRC-5 fibroblasts for all complexes (IC50 > 20 µM). Significantly higher platinum cellular accumulation and photo-generated ROS levels were observed for the di-functionalised complexes compared with their mono-functionalised analogues when cancer cells were treated under the same concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA