Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 79(2 Pt 2): 02A704, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18315152

RESUMEN

Prototype long pulse ion sources are being developed and tested toward the goal of a deuterium beam extraction of 120 keV/65 A. The latest prototype source consists of a magnetic bucket plasma generator and a four-grid copper accelerator system with multicircular apertures of 568 holes. To measure the angular divergence and the ion species of the ion beam, an optical multichannel analyzer (OMA) system for a Doppler-shifted H-alpha lights was set up at the end of a gas-cell neutralizer. But the OMA data are very difficult to analyze due to a large background level on the top of the three energy peaks (coming from H(+), H(2) (+), and H(3) (+)). These background spectra in the OMA signals seem to result from partially accelerated ion beams in the accelerator. Extracted ions could undergo a premature charge exchange as the accelerator column tends to have a high hydrogen partial pressure from the unused gas from the plasma generator, resulting in a continuous background of partially accelerated beam particles at the accelerator exit. This effect is calculated by accounting for all the possible atomic collision processes and numerically summing up three ion species across the accelerator column. The collection of all the atomic reaction cross sections and the numerical summing up will be presented. The result considerably depends on the background pressure and the ion beam species ratio (H(+), H(2) (+), and H(3) (+)). This effect constitutes more than 20% of the whole particle distribution. And the energy distribution of those suffering from collisions is broad and shows a broad maximum in the vicinity of the half and the third energy region.

2.
Rev Sci Instrum ; 79(2 Pt 2): 02B310, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18315176

RESUMEN

In this study it is found that the cusp magnetic field configuration of an anode bucket influences the primary electron behavior. An electron orbit code (ELEORBIT code) showed that an azimuthal line cusp (cusp lines run azimuthally with respect to the beam extraction direction) provides a longer primary electron confinement time than an axial line cusp configuration. Experimentally higher plasma densities were obtained under the same arc power when the azimuthal cusp chamber was used. The newly designed azimuthal cusp bucket has been investigated in an effort to increase the plasma density in its plasma generator per arc power.

3.
Rev Sci Instrum ; 79(2 Pt 2): 02C101, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18315227

RESUMEN

Long pulse operational characteristics of the high current ion source for the KSTAR neutral beam system are described. The beam pulse length of 300 s was successfully operated at a beam power of 1.6 MW with a beam energy of 70 keV. Beam energy, beam current, beam divergence, arc power, and several other operational parameters were measured during a pulse to analyze the long pulse properties. The increase of the cooling water temperature of the accelerator grids and plasma generator components were measured by water flow calorimetric system using thermocouples. The temperature rises of the filament electrodes of the ion source and the G1 grids (plasma grids) of the accelerator turned out to be the critical factors of the long pulse operation in the current system.

4.
Rev Sci Instrum ; 85(2): 02B311, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593588

RESUMEN

A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

5.
Rev Sci Instrum ; 83(2): 02B112, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22380269

RESUMEN

The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

6.
Rev Sci Instrum ; 81(2): 02B106, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20192413

RESUMEN

Recent experiments with a prototype long-pulse, high-current ion source being developed for the neutral beam injection system of the Korea Superconducting Tokamak Advanced Research have shown that the accelerator grid assembly needs a further upgrade to achieve the final goal of 120keV/65A for the deuterium ion beam. The accelerator upgrade concept was determined theoretically by simulations using the IGUN code. The simulation study was focused on finding parameter sets that raise the optimum perveance as large as possible and reduce the beam divergence as low as possible. From the simulation results, it was concluded that it is possible to achieve this goal by sliming the plasma grid (G1), shortening the second gap (G2-G3), and adjusting the G2 voltage ratio.

7.
Rev Sci Instrum ; 81(2): 02A317, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20192338

RESUMEN

A hexapole magnet for a 14.5 GHz electron cyclotron resonance (ECR) ion source, where the maximum radial field on the wall of the plasma chamber is higher than 1.1 T, has been designed and fabricated. The size of the outer diameter and the number of the sector of the hexapole are optimized for a 14.5 GHz ECR ion source with the help of a three-dimensional field calculation code. Moreover, to make a strong and long-life magnet against the demagnetic field on the hexapole multilayered structure in radial and axial directions is considered in the design. The distributions of the demagnetic fields are estimated by the calculation of the radial field in a hexapole magnet and the axial field from the solenoid coils. Proper grades of magnetic materials depending on the strength of the demagnetic field are applied for the different layers. The magnetic fields of the measured and calculated ones have been compared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA