RESUMEN
The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.
Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Proliferación Celular/genética , Citotoxicidad Inmunológica/genética , Vigilancia Inmunológica , Interferón gamma/metabolismo , Interleucina-15/metabolismo , Janus Quinasa 1/metabolismo , Activación de Linfocitos/genética , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Neoplasias/inmunología , Transducción de Señal/genética , Proteínas Supresoras de la Señalización de Citocinas/genéticaRESUMEN
Sperm develop from puberty in the seminiferous tubules, inside the blood-testis barrier to prevent their recognition as "non-self" by the immune system, and it is widely assumed that human sperm-specific proteins cannot access the circulatory or immune systems. Sperm-specific proteins aberrantly expressed in cancer, known as cancer-testis antigens (CTAs), are often pursued as cancer biomarkers and therapeutic targets based on the assumption they are neoantigens absent from the circulation in healthy men. Here, we identify a wide range of germ cell-derived and sperm-specific proteins, including multiple CTAs, that are selectively deposited by the Sertoli cells of the adult mouse and human seminiferous tubules into testicular interstitial fluid (TIF) that is "outside" the blood-testis barrier. From TIF, the proteins can access the circulatory- and immune systems. Disruption of spermatogenesis decreases the abundance of these proteins in mouse TIF, and a sperm-specific CTA is significantly decreased in TIF from infertile men, suggesting that exposure of certain CTAs to the immune system could depend on fertility status. The results provide a rationale for the development of blood-based tests useful in the management of male infertility and indicate CTA candidates for cancer immunotherapy and biomarker development that could show sex-specific and male-fertility-related responses.
Asunto(s)
Antígenos de Neoplasias/análisis , Proteínas/análisis , Túbulos Seminíferos/metabolismo , Espermatozoides/química , Animales , Barrera Hematotesticular , Líquido Extracelular/química , Humanos , Inmunoterapia , Infertilidad Masculina/metabolismo , Masculino , Ratones , Neoplasias/terapia , Proteoma , Células de Sertoli/fisiología , Espermatogénesis , Testículo/metabolismoRESUMEN
Label-free quantification (LFQ) of shotgun proteomics data is a popular and robust method for the characterization of relative protein abundance between samples. Many analytical pipelines exist for the automation of this analysis, and some tools exist for the subsequent representation and inspection of the results of these pipelines. Mass Dynamics 1.0 (MD 1.0) is a web-based analysis environment that can analyze and visualize LFQ data produced by software such as MaxQuant. Unlike other tools, MD 1.0 utilizes a cloud-based architecture to enable researchers to store their data, enabling researchers to not only automatically process and visualize their LFQ data but also annotate and share their findings with collaborators and, if chosen, to easily publish results to the community. With a view toward increased reproducibility and standardization in proteomics data analysis and streamlining collaboration between researchers, MD 1.0 requires minimal parameter choices and automatically generates quality control reports to verify experiment integrity. Here, we demonstrate that MD 1.0 provides reliable results for protein expression quantification, emulating Perseus on benchmark datasets over a wide dynamic range. The MD 1.0 platform is available globally via: https://app.massdynamics.com/.
Asunto(s)
Proteómica , Programas Informáticos , Internet , Proteínas , Proteómica/métodos , Reproducibilidad de los ResultadosRESUMEN
Repair after damage is essential for tissue homeostasis. Postmenstrual endometrial repair is a cyclical manifestation of rapid, scar-free, tissue repair taking â¼3-5 d. Skin repair after wounding is slower (â¼2 wk). In the case of chronic wounds, it takes months to years to restore integrity. Herein, the unique "rapid-repair" endometrial environment is translated to the "slower repair" skin environment. Menstrual fluid (MF), the milieu of postmenstrual endometrial repair, facilitates healing of endometrial and keratinocyte "wounds" in vitro, promoting cellular adhesion and migration, stimulates keratinocyte migration in an ex vivo human skin reconstruct model, and promotes re-epithelialization in an in vivo porcine wound model. Proteomic analysis of MF identified a large number of proteins: migration inhibitory factor, neutrophil gelatinase-associated lipocalin, follistatin like-1, chemokine ligand-20, and secretory leukocyte protease inhibitor were selected for further investigation. Functionally, they promote repair of endometrial and keratinocyte wounds by promoting migration. Translation of these and other MF factors into a migration-inducing treatment paradigm could provide novel treatments for tissue repair.-Evans, J., Infusini, G., McGovern, J., Cuttle, L., Webb, A., Nebl, T., Milla, L., Kimble, R., Kempf, M., Andrews, C. J., Leavesley, D., Salamonsen, L. A. Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair.
Asunto(s)
Endometrio/citología , Queratinocitos/citología , Menstruación/metabolismo , Proteoma/metabolismo , Piel/citología , Cicatrización de Heridas , Animales , Adhesión Celular , Movimiento Celular , Proliferación Celular , Endometrio/metabolismo , Femenino , Humanos , Queratinocitos/metabolismo , Proteómica , Piel/metabolismo , PorcinosRESUMEN
Selecting a sample preparation strategy for mass spectrometry-based proteomics is critical to the success of quantitative workflows. Here we present a universal, solid-phase protein preparation (USP3) method which is rapid, robust, and scalable, facilitating high-throughput protein sample preparation for bottom-up and top-down mass spectrometry (MS) analysis. This technique builds upon the single-pot solid-phase-enhanced sample preparation (SP3) where we now demonstrate its scalability (low to high micrograms of protein) and the influence of variables such as bead and enzyme amounts on the efficiency of protein digestion. We also incorporate acid hydrolysis of DNA and RNA during complete proteome extraction resulting in a more reliable method that is simple and easy to implement for routine and high-throughput analysis of proteins. We benchmarked the performance of this technique against filter-aided sample preparation (FASP) using 30 µg of total HeLa protein lysate. We also show that the USP3 method is compatible with top-down MS where we reproducibly detect over 1800 proteoforms from 50 µg of HeLa protein lysate. The USP3 protocol allows for efficient and reproducible data to be generated in a cost-effective and robust manner with minimal down time between sample collection and analysis by MS.
Asunto(s)
Proteómica/métodos , Manejo de Especímenes/métodos , Recolección de Datos , Células HeLa , Humanos , Espectrometría de Masas/métodos , ProteolisisRESUMEN
Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.
Asunto(s)
Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Tracto Gastrointestinal/microbiología , Transducción de Señal , Factores de Virulencia/metabolismo , Animales , Caspasa 8/metabolismo , Muerte Celular , Citrobacter rodentium/patogenicidad , Citrobacter rodentium/fisiología , Escherichia coli Enteropatógena/patogenicidad , Activación Enzimática , Infecciones por Escherichia coli/patología , Proteína Ligando Fas/antagonistas & inhibidores , Proteína Ligando Fas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/química , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , N-Acetilglucosaminiltransferasas/metabolismo , Estructura Terciaria de Proteína , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína de Dominio de Muerte Asociada a Receptor de TNF/química , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Receptor fas/deficiencia , Receptor fas/metabolismoRESUMEN
The regenerative, proliferative phase of a woman's menstrual cycle is a critical period which lays the foundation for the subsequent, receptive secretory phase. Although endometrial glands and their secretions are essential for embryo implantation and survival, the proliferative phase, when these glands form, has been rarely examined. We hypothesized that alterations in the secreted proteome of the endometrium of idiopathic infertile women would reflect a disturbance in proliferative phase endometrial regeneration. Our aim was to compare the proteomic profile of proliferative phase uterine fluid from fertile (n = 9) and idiopathic infertile (n = 10) women. Proteins with ≥2-fold change (P < 0.05) were considered significantly altered between fertile and infertile groups. Immunohistochemistry examined the endometrial localization of identified proteins. Western immunoblotting defined the forms of extracellular matrix protein 1 (ECM1) in uterine lavage fluid. Proteomic analysis identified four proteins significantly downregulated in infertile women compared to fertile women, including secreted frizzled-related protein 4 (SFRP4), CD44, and ECM1: two proteins were upregulated. Seven proteins were unique to the fertile group and six (including isoaspartyl peptidase/L-asparaginase [ASRGL1]) were unique to the infertile group. Identified proteins were classified into biological processes of tissue regeneration and regulatory processes. ASRGL1, SFRP4, and ECM1 localized to glandular epithelium and stroma, cluster of differentiation 44 (CD44) to stroma and immune cells. ECM1 was present in two main molecular weight forms in uterine fluid. Our results indicate a disturbance in endometrial development during the proliferative phase among infertile women, providing insights into human endometrial development and potential therapeutic targets for infertility.
Asunto(s)
Líquidos Corporales/metabolismo , Endometrio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fase Folicular/metabolismo , Receptores de Hialuranos/metabolismo , Infertilidad Femenina/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adulto , Femenino , Regulación de la Expresión Génica , Humanos , ProteómicaRESUMEN
Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing.
Asunto(s)
Destrina/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/genética , Actinas/metabolismo , Sitios de Unión , Cofilina 1/química , Cofilina 1/genética , Cofilina 1/metabolismo , Citocalasina D/química , Destrina/genética , Destrina/metabolismo , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismoRESUMEN
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues increases the susceptibility of the polypeptide chain to misfold, causing amyloid aggregation under physiological condition, i.e., neutral pH and room temperature. The role played by tryptophanyl residues in driving the folding process has been investigated by examining three mutated apomyoglobins, i.e., W7F, W14F, and the amyloid-forming mutant W7FW14F, by an integrated approach based on far-ultraviolet (UV) circular dichroism (CD) analysis, fluorescence spectroscopy, and complementary proteolysis. Particular attention has been devoted to examine the conformational and dynamic properties of the equilibrium intermediate formed at pH 4.0, since it represents the early organized structure from which the native fold originates. The results show that the W â F substitutions at position 7 and 14 differently affect the structural organization of the AGH subdomain of apomyoglobin. The combined effect of the two substitutions in the double mutant impairs the formation of native-like contacts and favors interchain interactions, leading to protein aggregation and amyloid formation.
Asunto(s)
Amiloide/química , Apoproteínas/química , Modelos Moleculares , Mioglobina/química , Fenilalanina/química , Triptófano/química , Secuencia de Aminoácidos , Animales , Apoproteínas/genética , Datos de Secuencia Molecular , Mutación Missense , Mioglobina/genética , Fenilalanina/genética , Conformación Proteica , Pliegue de Proteína , Análisis Espectral , Triptófano/genética , BallenasRESUMEN
For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample's complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide's monoisotopic mass, which is critical for the peptide's identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument's detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706.
Asunto(s)
Péptidos , Proteómica , Algoritmos , Cromatografía Liquida , Isótopos , Espectrometría de Masas , Péptidos/química , Programas InformáticosRESUMEN
Nitrite has recently emerged as an important bioactive molecule, capable of conferring cardioprotection and a variety of other benefits in the cardiovascular system and elsewhere. The mechanisms by which it accomplishes these functions remain largely unclear. To characterize the dose response and corresponding cardiac sequelae of transient systemic elevations of nitrite, we assessed the time course of oxidation/nitros(yl)ation, as well as the metabolomic, proteomic, and associated functional changes in rat hearts following acute exposure to nitrite in vivo. Transient systemic nitrite elevations resulted in: (1) rapid formation of nitroso and nitrosyl species; (2) moderate short-term changes in cardiac redox status; (3) a pronounced increase in selective manifestations of long-term oxidative stress as evidenced by cardiac ascorbate oxidation, persisting long after changes in nitrite-related metabolites had normalized; (4) lasting reductions in glutathione oxidation (GSSG/GSH) and remarkably concordant nitrite-induced cardioprotection, which both followed a complex dose-response profile; and (5) significant nitrite-induced protein modifications (including phosphorylation) revealed by mass spectrometry-based proteomic studies. Altered proteins included those involved in metabolism (eg, aldehyde dehydrogenase 2, ubiquinone biosynthesis protein CoQ9, lactate dehydrogenase B), redox regulation (eg, protein disulfide isomerase A3), contractile function (eg, filamin-C), and serine/threonine kinase signaling (eg, protein kinase A R1alpha, protein phosphatase 2A A R1-alpha). Thus, brief elevations in plasma nitrite trigger a concerted cardioprotective response characterized by persistent changes in cardiac metabolism, redox stress, and alterations in myocardial signaling. These findings help elucidate possible mechanisms of nitrite-induced cardioprotection and have implications for nitrite dosing in therapeutic regimens.
Asunto(s)
Cardiotónicos/farmacología , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Nitritos/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteoma/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Masculino , Oxidación-Reducción/efectos de los fármacos , Proteómica/métodos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacosRESUMEN
Transthyretin (TTR) amyloidosis and hemoglobinopathies are the archetypes of molecular diseases where point mutation characterization is diagnostically critical. We have developed a Top-down analytical platform for variant and/or modified protein sequencing and are examining the feasibility of using this platform for the analysis of hemoglobin/TTR patient samples and evaluating the potential clinical applications. The platform is based on a commercial high resolution hybrid orbitrap mass spectrometer (LTQ-Orbitrap(™)) with automated sample introduction; automated data analysis is performed by our own software algorithm (BUPID topdown).The analytical strategy consists of iterative data capture, first recording a mass profile of the protein(s). The presence of a variant is revealed by a mass shift consistent with the amino acid substitution. Nozzle-skimmer dissociation (NSD) of the protein(s) yields a wide variety of sequence-defining fragment ions. The fragment ion containing the amino acid substitution or modification can be identified by searching for a peak exhibiting the mass shift observed in the protein mass profile. This fragment ion can then be selected for MS/MS analysis in the ion trap to yield sequence information permitting the identification of the variant. Substantial sequence coverage has been obtained in this manner. This strategy allows for a stepwise MS/MS analysis of the protein structure. The sequence information obtained can be supplemented with whole protein NSD fragmentation and MS/MS analysis of specific protein charge states. The analyses of variant forms of TTR and hemoglobin are presented to illustrate the potential of the method.
RESUMEN
MARCH1 and MARCH8 are ubiquitin ligases that control the expression and trafficking of critical immunoreceptors. Understanding of their function is hampered by three major knowledge gaps: (i) it is unclear which cell types utilize these ligases; (ii) their level of redundancy is unknown; and (iii) most of their putative substrates have been described in cell lines, often overexpressing MARCH1 or MARCH8, and it is unclear which substrates are regulated by either ligase in vivo. Here we address these questions by systematically analyzing the immune cell repertoire of MARCH1- or MARCH8-deficient mice, and applying unbiased proteomic profiling of the plasma membrane of primary cells to identify MARCH1 and MARCH8 substrates. Only CD86 and MHC II were unequivocally identified as immunoreceptors regulated by MARCH1 and MARCH8, but each ligase carried out its function in different tissues. MARCH1 regulated MHC II and CD86 in professional and "atypical" antigen presenting cells of hematopoietic origin, including neutrophils, eosinophils and monocytes. MARCH8 only operated in non-hematopoietic cells, such as thymic and alveolar epithelial cells. Our results establish the tissue-specific functions of MARCH1 and MARCH8 in regulation of immune receptor expression and reveal that the range of cells constitutively endowed with antigen-presentation capacity is wider than generally appreciated.
RESUMEN
Exosomes are extracellular vesicles secreted by cells that have an important biological function in intercellular communication by transferring biologically active proteins, lipids, and RNAs to neighboring or distant cells. While a role for exosomes in antimicrobial defense has recently emerged, currently very little is known regarding the nature and functional relevance of exosomes generated in vivo, particularly during an active viral infection. Here, we characterized exosomes released into the airways during influenza virus infection. We show that these vesicles dynamically change in protein composition over the course of infection, increasing expression of host proteins with known anti-influenza activity, and viral proteins with the potential to trigger host immune responses. We show that exosomes released into the airways during influenza virus infection trigger pulmonary inflammation and carry viral antigen that can be utilized by antigen presenting cells to drive the induction of a cellular immune response. Moreover, we show that attachment factors for influenza virus, namely α2,3 and α2,6-linked sialic acids, are present on the surface of airway exosomes and these vesicles have the ability to neutralize influenza virus, thereby preventing the virus from binding and entering target cells. These data reveal a novel role for airway exosomes in the antiviral innate immune defense against influenza virus infection.
Asunto(s)
Exosomas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Infecciones por Orthomyxoviridae/inmunología , Sistema Respiratorio/inmunología , Animales , Transporte Biológico , Exosomas/virología , Ratones , Ratones Endogámicos C57BL , Orthomyxoviridae/inmunología , Orthomyxoviridae/fisiología , Infecciones por Orthomyxoviridae/virología , Proteómica , Sistema Respiratorio/virología , Organismos Libres de Patógenos Específicos , Acoplamiento ViralRESUMEN
Toxoplasma gondii infects approximately 30% of the world's population, causing disease primarily during pregnancy and in individuals with weakened immune systems. Toxoplasma secretes and exports effector proteins that modulate the host during infection, and several of these proteins are processed by the Golgi-associated aspartyl protease 5 (ASP5). Here, we identify ASP5 substrates by selectively enriching N-terminally derived peptides from wild-type and Δasp5 parasites. We reveal more than 2,000 unique Toxoplasma N-terminal peptides, mapping to both natural N termini and protease cleavage sites. Several of these peptides mapped directly downstream of the characterized ASP5 cleavage site, arginine-arginine-leucine (RRL). We validate candidates as true ASP5 substrates, revealing they are not processed in parasites lacking ASP5 or in wild-type parasites following mutation of the motif from RRL to ARL. All identified ASP5 substrates are dense granule proteins, and interestingly, none appear to be exported, thus differing from the analogous system in related Plasmodium spp. Instead we show that the majority of substrates reside within the parasitophorous vacuole (PV), and its membrane (the PVM), including two kinases and one phosphatase. We show that genetic deletion of WNG2 leads to attenuation in a mouse model, suggesting that this putative kinase is a new virulence factor in Toxoplasma Collectively, these data constitute the first in-depth analyses of ASP5 substrates and shed new light on the role of ASP5 as a maturase of dense granule proteins during the Toxoplasma lytic cycle.IMPORTANCEToxoplasma gondii is one of the most successful human parasites. Central to its success is the arsenal of virulence proteins introduced into the infected host cell. Several of these virulence proteins require direct maturation by the aspartyl protease ASP5, and all require ASP5 for translocation into the host cell, yet the true number of ASP5 substrates and complete repertoire of effectors is currently unknown. Here we selectively enrich N-terminally derived peptides using Terminal Amine Isotopic Labeling of Substrates (TAILS) and use quantitative proteomics to reveal novel ASP5 substrates. We identify, using two different enrichment techniques, new ASP5 substrates and their specific cleavage sites. ASP5 substrates include two kinases and one phosphatase that reside at the host-parasite interface, which are important for infection.
Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasma/metabolismo , Proteasas de Ácido Aspártico/genética , Células Cultivadas , Fibroblastos/parasitología , Eliminación de Gen , Humanos , Membranas Intracelulares/metabolismo , Proteínas Protozoarias/genética , Toxoplasma/genética , Vacuolas/metabolismo , Vacuolas/parasitologíaRESUMEN
PURPOSE: For the vast majority of ovarian cancer patients, optimal surgical debulking remains a key prognostic factor associated with improved survival. A standardized, biomarker-based test, to preoperatively discriminate benign from malignant disease and inform appropriate patient triage, is highly desirable. However, no fit-for-purpose biomarkers have yet been identified. EXPERIMENTAL DESIGN: We conducted a pilot study consisting of 40 patient urine samples (20 from each group), using label-free quantitative (LFQ) mass spectrometry, to identify potential biomarker candidates in urine from individual ovarian cancer patients. To validate these changes, we used parallel reaction monitoring (PRM) to investigate their abundance in an independent validation cohort (n = 20) of patient urine samples. RESULTS: LFQ analyses identified 4394 proteins (17 027 peptides) in a discovery set of 20 urine samples. Twenty-three proteins were significantly elevated in the malignant patient group compared to patients with benign disease. Several proteins, including LYPD1, LYVE1, PTMA, and SCGB1A1 were confirmed to be enriched in the urine of ovarian cancer patients using PRM. We also identified the established ovarian cancer biomarkers WFDC2 (HE4) and mesothelin (MSLN), validating our approach. CONCLUSIONS AND CLINICAL RELEVANCE: This is the first application of a LFQ-PRM workflow to identify and validate ovarian cancer-specific biomarkers in patient urine samples.
Asunto(s)
Biomarcadores de Tumor/orina , Proteínas de Neoplasias/orina , Neoplasias Ováricas/orina , Femenino , Humanos , Mesotelina , Proyectos Piloto , Reproducibilidad de los ResultadosRESUMEN
For the characterization of protein sequences and post-translational modifications by MS, the 'top-down' proteomics approach utilizes molecular and fragment ion mass data obtained by ionizing and dissociating a protein in the mass spectrometer. This requires more complex instrumentation and methodology than the far more widely used 'bottom-up' approach, which instead uses such data of peptides from the protein's digestion, but the top-down data are far more specific. The ESI MS spectrum of a 14 protein mixture provides full separation of its molecular ions for MS/MS dissociation of the individual components. False-positive rates for the identification of proteins are far lower with the top-down approach, and quantitation of multiply modified isomers is more efficient. Bottom-up proteolysis destroys the information on the size of the protein and the connectivities of the peptide fragments, but it has no size limit for protein digestion. In contrast, the top-down approach has a approximately 500 residue, approximately 50 kDa limitation for the extensive molecular ion dissociation required. Basic studies indicate that this molecular ion intractability arises from greatly strengthened electrostatic interactions, such as hydrogen bonding, in the gas-phase molecular ions. This limit is now greatly extended by variable thermal and collisional activation just after electrospray ('prefolding dissociation'). This process can cleave 287 inter-residue bonds in the termini of a 1314 residue (144 kDa) protein, specify previously unidentified disulfide bonds between eight of 27 cysteines in a 1714 residue (200 kDa) protein, and correct sequence predictions in two proteins, one of 2153 residues (229 kDa).
Asunto(s)
Proteínas/análisis , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Secuencia de Aminoácidos , Hidrólisis , Datos de Secuencia Molecular , Proteínas/química , Proteínas/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína/métodosRESUMEN
PURPOSE: Chromosomal translocation of the mixed lineage leukemia (MLL) locus generates fusion proteins that drive acute myeloid leukemia (AML) resulting in atypical histone methyltransferase activity and alterations in the epigenetic regulation of gene expression. Targeting histone regulators, such as Enhancer of Zeste Homologue 2 (EZH2), has shown promise in AML. Profiling differential protein expression following inhibition of epigenetic regulators in AML may help to identify novel targets for therapeutics. EXPERIMENTAL DESIGN: Murine models of AML combined with quantitative SILAC analysis were used to identify differentially expressed proteins following inhibition of EZH2 activity using 3-Deazaneplanocin A (DZnep). Western blotting and flow cytometry were used to validate a subset of differentially expressed proteins. Gene set analysis was used to determine changes to reported EZH2 target genes. RESULTS: Our quantitative proteomic analysis and subsequent validation of protein changes identified that epigenetic therapy leads to cell death preceded by the induction of differentiation with concurrent p53 up-regulation and cell cycle arrest. Gene set analysis revealed a specific subset of EZH2 target genes that were regulated by DZnep in AML. CONCLUSION AND CLINICAL RELEVANCE: These discoveries highlight how this new class of drugs affects AML cell biology and cell survival, and may help identify novel targets and strategies to increase treatment efficacy.
Asunto(s)
Adenosina/análogos & derivados , Muerte Celular/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida , Proteómica , Adenosina/farmacología , Adenosina/uso terapéutico , Animales , Carcinogénesis/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , RatonesRESUMEN
Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.