Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 35(32): 11292-307, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26269637

RESUMEN

Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT: In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability.


Asunto(s)
Cerebelo/patología , Potenciales de la Membrana/fisiología , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología , Potenciales de Acción/fisiología , Animales , Ataxina-1 , Ataxinas , Atrofia/patología , Atrofia/fisiopatología , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/fisiopatología
2.
Proc Natl Acad Sci U S A ; 108(1): 260-5, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173221

RESUMEN

Trinucleotide expansions cause disease by both protein- and RNA-mediated mechanisms. Unexpectedly, we discovered that CAG expansion constructs express homopolymeric polyglutamine, polyalanine, and polyserine proteins in the absence of an ATG start codon. This repeat-associated non-ATG translation (RAN translation) occurs across long, hairpin-forming repeats in transfected cells or when expansion constructs are integrated into the genome in lentiviral-transduced cells and brains. Additionally, we show that RAN translation across human spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion transcripts results in the accumulation of SCA8 polyalanine and DM1 polyglutamine expansion proteins in previously established SCA8 and DM1 mouse models and human tissue. These results have implications for understanding fundamental mechanisms of gene expression. Moreover, these toxic, unexpected, homopolymeric proteins now should be considered in pathogenic models of microsatellite disorders.


Asunto(s)
Biosíntesis de Proteínas/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Secuencia de Aminoácidos , Northern Blotting , Línea Celular , Clonación Molecular , Codón Iniciador/genética , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Lentivirus , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis , Distrofia Miotónica/genética , Péptidos/genética , Péptidos/metabolismo , Biosíntesis de Proteínas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Brain Res Bull ; 88(1): 33-42, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21810454

RESUMEN

The spinocerebellar ataxias (SCAs) are dominantly inherited disorders that primarily affect coordination of motor function but also frequently involve other brain functions. The models described in this review address mechanisms of trinucleotide-repeat expansions, particularly those relating to polyglutamine expression in the mutant proteins. Modeling chronic late-onset human ataxias in mice is difficult because of their short life-span. While this potential hindrance has been partially overcome by using over-expression of the mutant gene, and/or worsening of the mutation by increasing the length of the trinucleotide repeat expansion, interpretation of results from such models and extrapolation to the human condition should be cautious. Nevertheless, genetically engineered murine models of these diseases have enhanced our understanding of the pathogenesis of many of these conditions. A common theme in many of the polyglutamine-repeat diseases is nuclear localization of mutant protein, with resultant effects on gene regulation. Conditional mutant models and transgenic knock-down therapy have demonstrated the potential for reversibility of disease when production of mutant protein is halted. Several other genetically engineered murine models of SCA also have begun to show utility in the identification and assessment of more classical drug-based therapeutic modalities.


Asunto(s)
Ratones Mutantes Neurológicos , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Modelos Animales de Enfermedad , Ingeniería Genética , Humanos , Ratones , Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA