RESUMEN
We perform a computational study of three different reaction mechanisms for the photo-catalytic reduction of CO2 on the TiO2 anatase(101) surface known as (i) the carbene, (ii) the formaldehyde and (iii) the glyoxal pathways. We define a set of approximations that allows testing a number of mechanistic hypotheses and design experiments to validate them. We find that the energetically most favourable reaction mechanism among those proposed in the literature is the formaldehyde path, and the rate-limiting step is likely to be the formation of CH3 radicals from dissociation of CH3OH. We show that an intermediate that supports this mechanism is OCH2OH. We also find that formaldehyde would be an energetically favorable intermediate forming from CO and HCO, intermediates that are proposed in the early stage of the carbene and glyoxal pathways respectively. Some possible variants of mechanisms and methods to ease the formation of CH3 radicals are also discussed.
RESUMEN
The speciation of metals in solution controls their reactivity, and this is extremely pertinent in the area of metal salts dissolved in ionic liquids. In the current study, the speciation of 25 metal salts is investigated in four deep eutectic solvents (DESs) and five imidazolium-based ionic liquids using extended X-ray absorption fine structure. It is shown that in diol-based DESs M(I) ions form [MCl2](-) and [MCl3](2-) complexes, while all M(II) ions form [MCl4](2-) complexes, with the exception of Ni(II), which exhibits a very unusual coordination by glycol molecules. This was also found in the X-ray crystal structure of the compound [Ni(phen)2(eg)]Cl2·2eg (eg = ethylene glycol). In a urea-based DES, either pure chloro or chloro-oxo coordination is observed. In [C6mim][Cl] pure chloro complexation is also observed, but coordination numbers are smaller (typically 3), which can be explained by the long alkyl chain of the cation. In [C2mim][SCN] metal ions are entirely coordinated by thiocyanate, either through the N or the S atom, depending on the hardness of the metal ion according to the hard-soft acid-base principle. With weaker coordinating anions, mixed coordination between solvent and solute anions is observed. The effect of hydrate or added water on speciation is insignificant for the diol-based DESs and small in other liquids with intermediate or strong ligands. One of the main findings of this study is that, with respect to metal speciation, there is no fundamental difference between deep eutectic solvents and classic ionic liquids.
RESUMEN
We ask whether it is possible to predict the efficiency of a new dye in dye sensitized solar cells (DSSCs) on the basis of the known performance of existing dyes in the same type of device. We evaluate a number of computable predictors of the efficiency for a large set of dyes whose experimental efficiency is known. We have then used statistical regression methods to establish the relation between the predictors and the efficiency. Our predictions are associated with a rigorously determined confidence level. For a new dye of the same family we are able to predict the probability that its efficiency in a DSSC is larger than a certain threshold. This method is useful for accelerating the discovery of new dyes and establishing more rigorously the existence of specific correlations between structure and properties. Within the properties considered we find that the dye efficiency correlates more strongly with its oxidation potential and reorganization energy.
Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Energía Solar , TermodinámicaRESUMEN
AIMS: Carboxylesterase (CES) plays an essential role in the hydrolysis of ester prodrugs. Our study explored the inhibitions of Radix Scutellariae flavones, including baicalein (B), baicalin (BG), wogonin (W), wogonoside (WG), oroxylin A (OXA) and oroxylin A-7-O-glucuronide (OAG), on CES-mediated hydrolysis of seven prodrugs (capecitabine, clopidogrel, mycophenolate mofetil, dabigatran etexilate, acetylsalicylic acid, prasugrel and irinotecan). MAIN METHODS: In vitro screenings were developed by incubating the flavones with prodrugs in rat plasma, intestine S9 and liver S9. Docking simulations were conducted using AMDock v1.5.2. In vivo evaluations were performed in rats co-administered with the selected flavone and prodrug via oral gavage/intravenous administration for five consecutive days. KEY FINDINGS: The in vitro investigation showed that B and OXA demonstrated strongest inhibitions on the hydrolysis of irinotecan followed by dabigatran in rat plasma, intestine S9 and liver S9. Consistent results showed in the molecular docking analyses. Additionally, in rats receiving irinotecan, B/OXA intravenous and oral pre-treatments both led to reduction trends on the active metabolite SN-38 formation in plasma. Besides, significant decreases of SN-38/irinotecan plasma concentration ratios were found in the B/OXA oral pre-treatment group with quicker and stronger inhibition potential in OXA pre-treatment than that from B pre-treatment. OXA oral pre-treatment was also found to be able to significantly inhibit intestinal CES2 activities at 0.5 h and 5 h after irinotecan administration. SIGNIFICANCE: Our current findings for the first time alert on potential CES-mediated HDIs between RS flavones and prodrugs, which provide a constructive information referring to rational drug combinations in clinical practice.
Asunto(s)
Flavonas , Profármacos , Scutellaria , Animales , Carboxilesterasa , Dabigatrán , Flavonas/farmacología , Irinotecán/farmacología , Simulación del Acoplamiento Molecular , Profármacos/farmacología , Ratas , Scutellaria baicalensisRESUMEN
We quantified the donor-π-acceptor (D-π-A) character of a large number of dyes (116) used in dye-sensitized solar cells (DSSCs) and correlated them with the power conversion efficiency of the corresponding cell. The result indicates that there is no correlation between different measures of D-π-A strength and efficiency; that is, the effect of the D-π-A character is completely washed out by other effects. We propose that other design rules should be identified by statistically testing them against the now rich set of experimentally available data.