Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 242: 290-297, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31054393

RESUMEN

Denitrifying bioreactors remove nitrate (NO3-) from agricultural drainage and are slated to be an integral part of nitrogen reduction strategies in the Mississippi River Basin. However, incomplete denitrification can result in nitrous oxide (N2O) production and anaerobic conditions within bioreactors may be conducive to methane (CH4) production via methanogenesis. Greenhouse gas production has the potential to trade excess NO3- in surface water with excess greenhouses gases in the atmosphere. Our study examined N2O and CH4 production from pilot scale (6.38 m3) bioreactors across three hydraulic residence times (HRTs), 2, 8, and 16 h. Production was measured from both the surface of the bioreactors and dissolved in the bioreactor effluent. Nitrous oxide and CH4 was produced across all HRTs, with the majority dissolved in the effluent. Nitrous oxide production was significantly greater (P < 0.05) from 2 h HRTs (478.43 mg N2O m-3 day-1) than from 8 (29.95 mg N2O m-3 day-1) and 16 (36.61 mg N2O m-3 day-1) hour HRTs. Methane production was significantly less (P < 0.05) from 2 h HRTs (0.51 g C m3 day-1) compared to 8 (1.50 g C m3 day-1) and 16 (1.69 g C m3 day-1) hour HRTs. The 2 h HRTs had significantly greater (P = 0.05) impacts to climate change compared to 8 and 16 h HRTs. Results from this study suggest managing HRTs between 6 and 8 h in field bioreactors could minimize total greenhouse gas production and maximize NO3- removal.


Asunto(s)
Reactores Biológicos , Óxido Nitroso , Desnitrificación , Metano , Mississippi
2.
J Environ Qual ; 47(2): 270-275, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29634788

RESUMEN

Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes hamber utomated ampling quipment (Flux) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gas flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (NO), carbon dioxide (CO), and methane (CH) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both NO and CO. Slopes of regression equations were 1.01 for CO and 0.97 for NO. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.


Asunto(s)
Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Suelo/química , Automatización , Monitoreo del Ambiente , Metano
3.
Environ Monit Assess ; 188(8): 453, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27393193

RESUMEN

The surface waters of Rathbun Lake watershed in southern Iowa are impacted by agricultural sources of sediments and nutrients, including phosphorus (P). Because stream sediments often play an important role in regulating P concentrations in stream water, we investigated sediment-water column P relationships in four creeks within the watershed and then evaluated the relationship between sediment properties and indicators of the risk of P loss. Based on Mehlich-3-extractable P (17 to 68 mg kg(-1)) and degree of P saturation (2 to 12 %), stream bank and bed sediments at the four sites were unlikely to serve as major sources of P. However, equilibrium P concentrations, which ranged from 0.02 to 0.12 mg L(-1), indicated that bed sediments could release P to the water column depending on dissolved P (DP) concentrations in the stream water and the time of year. The likelihood of P desorption from the sediments increased with increasing pH (r = 0.92, p < 0.01) and sand content (r = 0.78, p < 0.05), but decreased with clay content (r = -0.72, p < 0.05) and iron (Fe) (r = -0.93, p < 0.001) associated with organic matter. From these results, we speculate that changes in land use within the riparian areas may, at least initially, have little effect on P concentrations in the streams. Low concentrations of DP relative to total P (TP) in these streams, however, suggest that P loads to Rathbun Lake can be reduced if P inputs from eroded bank sediments are controlled.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/química , Fósforo/análisis , Ríos/química , Contaminación del Agua/análisis , Agricultura/métodos , Iowa
4.
J Environ Qual ; 44(6): 1754-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26641327

RESUMEN

Strategies to reduce nitrate-nitrogen (nitrate) pollution delivered to streams often seek to increase groundwater residence time to achieve measureable results, yet the effects of tile drainage on residence time have not been well documented. In this study, we used a geographic information system groundwater travel time model to quantify the effects of artificial subsurface drainage on groundwater travel times in the 7443-ha Bear Creek watershed in north-central Iowa. Our objectives were to evaluate how mean groundwater travel times changed with increasing drainage intensity and to assess how tile drainage density reduces groundwater contributions to riparian buffers. Results indicate that mean groundwater travel times are reduced with increasing degrees of tile drainage. Mean groundwater travel times decreased from 5.6 to 1.1 yr, with drainage densities ranging from 0.005 m (7.6 mi) to 0.04 m (62 mi), respectively. Model simulations indicate that mean travel times with tile drainage are more than 150 times faster than those that existed before settlement. With intensive drainage, less than 2% of the groundwater in the basin appears to flow through a perennial stream buffer, thereby reducing the effectiveness of this practice to reduce stream nitrate loads. Hence, strategies, such as reconnecting tile drainage to buffers, are promising because they increase groundwater residence times in tile-drained watersheds.

5.
J Environ Qual ; 52(1): 64-73, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36333932

RESUMEN

A saturated riparian buffer (SRB) is an edge-of-field conservation practice that intercepts tile drainage and reduces nitrate flux to nearby streams by redistributing the flow as shallow groundwater. In this study, a three-dimensional, finite-difference groundwater model representative of SRBs in central Iowa was developed to assess the flow of groundwater and implications for nitrate removal during spring conditions, when flow to the SRB is highest. The model reproduces field observations of water level with Nash-Sutcliffe efficiency of 0.68, which is deemed acceptable for hydrologic models. The modeling shows that groundwater flow is three-dimensional near the distribution pipe and the stream and primarily one-dimensional in the rest of the buffer. The path the water takes in flowing toward the stream depends on where it exits the distribution pipe. When nitrate is not limiting, the potential for nitrate removal depends on the length of the path-and thus travel time-and depth because denitrification potential varies with depth. Travel time Tt can be estimated well with slight modifications to a one-dimensional approximation: Tt = 1.11Lx /vx , where Lx is the buffer width and vx is a one-dimensional approximation of the average linear velocity of groundwater. Refining knowledge of SRB function is an important step toward enhancing design for improving water quality.


Asunto(s)
Agua Subterránea , Nitratos , Nitratos/análisis , Monitoreo del Ambiente , Calidad del Agua , Ríos
6.
Sci Total Environ ; 877: 162837, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924958

RESUMEN

Denitrification bioreactors are an effective edge-of-field conservation practice for nitrate (NO3) reduction from subsurface drainage. However, these systems may produce other pollutants and greenhouse gases during NO3 removal. Here a dual-chamber woodchip bioreactor system experiencing extreme low-flow conditions was monitored for its spatiotemporal NO3 and total organic carbon dynamics in the drainage water. Near complete removal of NO3 was observed in both bioreactor chambers in the first two years of monitoring (2019-2020) and in the third year of monitoring in chamber A, with significant (p < 0.01) reduction of the NO3-N each year in both chambers with 8.6-11.4 mg NO3-N L-1 removed on average. Based on the NO3 removal observed, spatial monitoring of sulfate (SO4), dissolved methane (CH4), and dissolved nitrous oxide (N2O) gases was added in the third year of monitoring (2021). In 2021, chambers A and B had median hydraulic residence times (HRTs) of 64 h and 39 h, respectively, due to varying elevations of the chambers, with drought conditions making the differences more pronounced. In 2021, significant production of dissolved CH4 was observed at rates of 0.54 g CH4-C m-3 d-1 and 0.07 g CH4-C m-3 d-1 in chambers A and B, respectively. In chamber A, significant removal (p < 0.01) of SO4 (0.23 g SO4 m-3 d-1) and dissolved N2O (0.21 mg N2O-N m-2 d-1) were observed, whereas chamber B produced N2O (0.36 mg N2O-N m-2 d-1). Considering the carbon dioxide equivalents (CO2e) on an annual basis, chamber A had loads (~12,000 kg CO2e ha-1 y-1) greater than comparable poorly drained agricultural soils; however, the landscape-scale impact was small (<1 % change in CO2e) when expressed over the drainage area treated by the bioreactor. Under low-flow conditions, pollution swapping in woodchip bioreactors can be reduced at HRTs <50 h and NO3 concentrations >2 mg N L-1.


Asunto(s)
Desnitrificación , Nitratos , Nitratos/análisis , Reactores Biológicos , Óxido Nitroso , Contaminación Ambiental
7.
J Environ Qual ; 50(6): 1430-1439, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34390594

RESUMEN

Saturated riparian buffers (SRBs) reduce nitrate export from agricultural tile drainage by infusing drainage water into carbon-rich riparian soils where denitrification and plant uptake occur. The water quality benefits from SRBs are well documented, but uncertainties about their effect on streambank stability have led to design standards that limit the maximum bank height and minimum buffer width, thus reducing the number of suitable candidate sites. In this study, the relationship between SRB design and streambank stability was examined through numerical slope stability modeling and validated using field sites. At the study sites, the addition of SRB flow increased the probability of failure by less than 3% for both simulated dry and rainfall scenarios. Furthermore, the simulations provide no evidence to support excluding potential sites based on bank height alone. Multivariate analysis of dimensionless parameters developed for SRB flow conditions was used to predict the factor of safety as a function of the SRB site and design conditions. The equation presented allows designers to assess the stability of a potential site where bank failure poses a heightened risk. The results of this study alleviate the need for extensive geotechnical evaluations at future SRB sites and could increase SRB implementation by expanding the range of eligible sites.


Asunto(s)
Monitoreo del Ambiente , Ríos , Agricultura , Nitratos/análisis , Suelo
8.
J Environ Qual ; 39(1): 97-105, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20048297

RESUMEN

While water quality functions of conservation buffers established adjacent to cropped fields have been widely documented, the relative contribution of these re-established perennial plant systems to greenhouse gases has not been completely documented. In the case of methane (CH(4)), these systems have the potential to serve as sinks of CH(4) or may provide favorable conditions for CH(4) production. This study quantifies CH(4) flux from soils of riparian buffer systems comprised of three vegetation types and compares these fluxes with those of adjacent crop fields. We measured soil properties and diel and seasonal variations of CH(4) flux in 7 to 17 yr-old re-established riparian forest buffers, warm-season and cool-season grass filters, and an adjacent crop field located in the Bear Creek watershed in central Iowa. Forest buffer and grass filter soils had significantly lower bulk density (P < 0.01); and higher pH (P < 0.01), total carbon (TC) (P < 0.01), and total nitrogen (TN) (P < 0.01) than crop field soils. There was no significant relationship between CH(4) flux and soil moisture or soil temperature among sites within the range of conditions observed. Cumulative CH(4) flux was -0.80 kg CH(4)-C ha(-1) yr(-1) in the cropped field, -0.46 kg CH(4)-C ha(-1) yr(-1) within the forest buffers, and 0.04 kg CH(4)-C ha(-1) yr(-1) within grass filters, but difference among vegetation covers was not significant. Results suggest that CH(4) flux was not changed after establishment of perennial vegetation on cropped soils, despite significant changes in soil properties.


Asunto(s)
Metano/química , Metano/metabolismo , Ríos , Suelo/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Agricultura , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
9.
Sci Total Environ ; 740: 140114, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32563878

RESUMEN

Riparian buffers are a conservation practice that increases vegetation diversity on the agricultural landscape while providing environmental benefits. This study specifically focused on the ability of riparian buffers to remove nitrate from shallow groundwater. There are many studies that assessed nitrate removal within buffers, but not many have a long-term, continuous data set that can analyze for variation in nitrate removal rates over time. Here we report on 21 years of nitrate well data, from 1996 through 2017, for three buffers in the Bear Creek watershed in central Iowa. These buffers are named using abbreviations to help keep landowners anonymous (e.g. RN, RS, and ST). Studied buffers RS and ST showed greater nitrate reduction (or removal) after 10 and 6 years of its establishment, respectively. Buffer RN did not experience a significant nitrate removal increase with time, but instead had higher nitrate removal rates when compared to buffers RS and ST of 10.3 g NO3--N m-1 day-1 from the start of this study. From this data, we suggest that past land management played a major role in the responses observed. RN had previously been established in cool-season grasses for grazing before being converted to a buffer, while RS and ST had been managed in a corn and soybean rotation. RN was thought to have higher denitrification immediately with increased labile soil carbon input and enhanced soil aggregation due to the grassland perennials, while buffer vegetation establishment increased soil carbon inputs and soil aggregation over time for RS and ST. These nitrate removal trends would not have been observed without access to long-term, continuous data. This study highlighted the importance of long-term data sets and the need to assess conservation practices over time to determine their longevity and efficiency with time.


Asunto(s)
Agua Subterránea/análisis , Nitratos/análisis , Monitoreo del Ambiente , Agua Subterránea/química , Iowa , Nitratos/química , Suelo
10.
J Environ Qual ; 49(6): 1624-1632, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33145805

RESUMEN

A saturated riparian buffer (SRB) is an edge-of-field conservation practice that reduces nitrate export from agricultural lands by redistributing tile drainage as shallow groundwater and allowing for denitrification and plant uptake. We propose an approach to improve the design of SRBs by analyzing a tradeoff in choosing the SRB width, and we apply the approach to six sites with SRBs in central Iowa. A larger width allows for more residence time, which increases the opportunity for removing nitrate that enters the buffer. However, because the SRBs considered here treat only a portion of the tile flow when it is large, for the same difference in hydraulic head, a smaller width allows more of the total tile flow to enter the buffer and therefore treats more of the drainage. By maximizing the effectiveness of nitrate removal, defined as the ratio of total nitrate removed by the SRB to total nitrate leaving the field in tile drainage, an equation for the optimal width was derived in terms of soil properties, denitrification rates, and head difference. All six sites with existing SRBs considered here have optimal widths smaller than the current width, and two are below the minimum width listed in current design standards. In terms of uncertainty, the main challenges in computing the optimal width for a site are estimating the removal coefficient for nitrate and determining the saturated hydraulic conductivity. Nevertheless, including a width that accounts for site conditions in the design standards would improve water quality locally and regionally.


Asunto(s)
Agua Subterránea , Nitratos , Tampones (Química) , Iowa , Nitratos/análisis , Suelo
11.
J Environ Qual ; 48(2): 261-269, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30951114

RESUMEN

Reestablishing perennial vegetation along riparian areas in agroecosystems reduces nutrient and sediment losses from agricultural lands. However, subsurface (tile) drains bypass traditional buffers routing the majority of shallow groundwater straight to surface waters, limiting their nutrient removal capabilities. Saturated riparian buffers (SRBs) reconnect subsurface drainage water with the soil profile to remove NO in tile water through microbial denitrification. One concern of enhancing denitrification on agricultural landscapes is the potential increase in NO emissions from incomplete denitrification. Our objective was to compare NO emissions from SRBs to traditional buffers and bordering crop fields at two sites, Bear Creek Site 1 and Iowa Site 1, in Central Iowa. We measured NO emissions directly from the soil surface and dissolved in shallow groundwater and estimated indirect emissions from downstream denitrification from 2015 through 2017. Nitrous oxide emissions from soil surfaces were greatest from fertilized corn ( L.). Saturated riparian buffers were only significantly greater ( < 0.05) than traditional buffers in one out of six site-years. Dissolved NO in shallow groundwater seeping from SRBs was not significantly greater ( < 0.05) than dissolved NO from the tile outlet among site years. Indirect NO emissions from rivers and estuaries were significantly reduced from NO removal in both SRBs. Overall, total NO emissions from SRBs were similar to those from traditional buffers and less than those from fertilized corn-soybean [ (L.) Merr.] agriculture. Replacing cultivated land in riparian areas with a SRB has shown potential to subsequently remove NO from surface waters and reduce NO emissions from agricultural landscapes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Óxido Nitroso/análisis , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Ecosistema , Ríos
12.
J Environ Qual ; 48(2): 376-384, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30951140

RESUMEN

Excess NO leaching from the agricultural Midwest via tile drainage water has contributed to both local drinking water and national Gulf of Mexico benthic hypoxia concerns. Both in-field and edge-of-field practices have been designed to help mitigate NO flux to surface waters. Edge-of-field practices focus on maximizing microbial denitrification, the conversion of NO to N gas. This study assessed denitrification rates from two saturated riparian buffers (SRBs) for 2 yr and a third SRB for 1 yr, for a total of five sample years. These SRBs were created by diverting NO-rich tile drainage water into riparian buffers soils. The SRBs in this study removed between 27 and 96% of the total diverted NO load. Measured cumulative average denitrification rate for each SRB sample year accounted for between 3.7 and 77.3% of the total NO removed. Both the cumulative maximum and 90% confidence interval denitrification rates accounted for all of the NO removed by the SRBs in three of the five sample years, indicating that denitrification can be a dominant NO removal mechanism in this edge-of-field practice. When adding the top 20 cm of each core to the cumulative denitrification rates for each SRB, denitrification accounted for between 33 and over 100% of the total NO removed. Buffer age (time since establishment) was speculated to enhance denitrification rates, and there was a trend of the soil closer to the surface making up the majority of the total denitrification rate. Finally, both NO and C could limit denitrification in these SRBs.


Asunto(s)
Biodegradación Ambiental , Desnitrificación , Nitrógeno/análisis , Contaminación Difusa/prevención & control , Agricultura , Monitoreo del Ambiente , Contaminación Difusa/estadística & datos numéricos , Suelo
13.
Sci Total Environ ; 660: 1015-1028, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743899

RESUMEN

Floodplain storage commonly represents one of the largest sediment fluxes within sediment budgets. In watersheds responding to large scale disturbance, floodplain-channel lateral connectivity may change over time with progression of channel evolution and associated changes in channel geometry. In this study we investigated the effects of channel geometry change on floodplain inundation frequency and flux of suspended sediment (SS) and total phosphorus (TP) to floodplain storage within the 52.2 km2 Walnut Creek watershed (Iowa, USA) through a combination of 25 in-field channel cross section transects, hydraulic modeling (HEC-RAS), and stream gauging station-derived water quality and quantity data. Cross sectional area of the 25 in-field channel cross sections increased by a mean of 17% over the 16 year study period (1998-2014), and field data indicate a general trend of degradation and widening to be present along Walnut Creek's main stem. Estimated stream discharge required to generate lateral overbank flow increased 15%, and floodplain inundation volume decreased by 37% over study duration. Estimated annual fluxes of SS and TP to floodplain storage decreased by 61 and 62% over study duration, respectively. The estimated reductions in flux to floodplain storage have potential to increase watershed export of SS and TP by 9 and 18%, respectively. Increased contributions to SS and TP export may continue as channel evolution progresses and floodplain storage opportunities continue to decline. In addition to loss of storage, higher discharges confined to the channel may have greater stream power, resulting in further enhancement of SS and TP export through accelerated bed and bank erosion. These increased contributions to watershed loads may mask SS and TP reductions achieved through edge of field practices, thus making it critical that stage and progression of channel evolution be taken into consideration when addressing sediment and phosphorus loading at the watershed scale.

14.
Sci Total Environ ; 625: 1330-1340, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29996430

RESUMEN

Orthophosphorus (OP) is the form of dissolved inorganic P that is commonly measured in groundwater studies, but the spatial distribution of groundwater OP across a watershed has rarely been assessed. In this study, we characterized spatial patterns of groundwater OP concentrations and loading rates within the 5218ha Walnut Creek watershed (Iowa) over a two-year period. Using a network of 24 shallow (<6m) monitoring wells established across watershed, OP concentrations ranged from <0.01 to 0.58mg/l in all samples (n=147) and averaged 0.084±0.107mg/l. Groundwater OP concentrations were higher in floodplains and OP mass loading rates were approximately three times higher than in uplands. We estimated that approximately 1231kg of OP is present in floodplain groundwater and 2869kg is present in upland groundwater within the shallow groundwater zone (0-5m depth). Assuming no new inputs of OP to shallow groundwater, we estimated it would take approximately eight years to flush out existing OP mass present in the system. Results suggest that conservation practices focused on reducing OP loading rates in floodplain areas may have a disproportionately large water quality benefit compared to upland areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA