Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Comput Biol ; 12(4): e1004851, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27078235

RESUMEN

Type III Secretion Systems (T3SS) are complex bacterial structures that provide gram-negative pathogens with a unique virulence mechanism whereby they grow a needle-like structure in order to inject bacterial effector proteins into the cytoplasm of a host cell. Numerous experiments have been performed to understand the structural details of this nanomachine during the past decade. Despite the concerted efforts of molecular and structural biologists, several crucial aspects of the assembly of this structure, such as the regulation of the length of the needle itself, remain unclear. In this work, we used a combination of mathematical and computational techniques to better understand length control based on the timing of substrate switching, which is a possible mechanism for how bacteria ensure that the T3SS needles are neither too short nor too long. In particular, we predicted the form of the needle length distribution based on this mechanism, and found excellent agreement with available experimental data from Salmonella typhimurium with only a single free parameter. Although our findings provide preliminary evidence in support of the substrate switching model, they also make a set of quantitative predictions that, if tested experimentally, would assist in efforts to unambiguously characterize the regulatory mechanisms that control the growth of this crucial virulence factor.


Asunto(s)
Modelos Biológicos , Salmonella typhimurium/fisiología , Sistemas de Secreción Tipo III/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Biología Computacional , Simulación por Computador , Interacciones Huésped-Patógeno/fisiología , Modelos Moleculares , Unión Proteica , Proteolisis , Salmonella typhimurium/patogenicidad , Procesos Estocásticos , Sistemas de Secreción Tipo III/química , Virulencia/fisiología , Factores de Virulencia/química , Factores de Virulencia/fisiología
2.
J Biotechnol Biomed ; 6(1): 13-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937168

RESUMEN

Long read sequencing technology is becoming increasingly popular for Precision Medicine applications like Whole Genome Sequencing (WGS) and microbial abundance estimation. Minimap2 is the state-of-the-art aligner and mapper used by the leading long read sequencing technologies, today. However, Minimap2 on CPUs is very slow for long noisy reads. ~60-70% of the run-time on a CPU comes from the highly sequential chaining step in Minimap2. On the other hand, most Point-of-Care computational workflows in long read sequencing use Graphics Processing Units (GPUs). We present minimap2-accelerated (mm2-ax), a heterogeneous design for sequence mapping and alignment where minimap2's compute intensive chaining step is sped up on the GPU and demonstrate its time and cost benefits. We extract better intra-read parallelism from chaining without losing mapping accuracy by forward transforming Minimap2's chaining algorithm. Moreover, we better utilize the high memory available on modern cloud instances apart from better workload balancing, data locality and minimal branch divergence on the GPU. We show mm2-ax on an NVIDIA A100 GPU improves the chaining step with 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over the fastest version of Minimap2, mm2-fast, benchmarked on a Google Cloud Platform instance of 30 SIMD cores.

3.
Nat Commun ; 12(1): 1507, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686069

RESUMEN

ATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility; however, its ability to detect active regulatory regions can depend on the depth of sequencing coverage and the signal-to-noise ratio. Here we introduce AtacWorks, a deep learning toolkit to denoise sequencing coverage and identify regulatory peaks at base-pair resolution from low cell count, low-coverage, or low-quality ATAC-seq data. Models trained by AtacWorks can detect peaks from cell types not seen in the training data, and are generalizable across diverse sample preparations and experimental platforms. We demonstrate that AtacWorks enhances the sensitivity of single-cell experiments by producing results on par with those of conventional methods using ~10 times as many cells, and further show that this framework can be adapted to enable cross-modality inference of protein-DNA interactions. Finally, we establish that AtacWorks can enable new biological discoveries by identifying active regulatory regions associated with lineage priming in rare subpopulations of hematopoietic stem cells.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Aprendizaje Profundo , Epigenómica/métodos , Animales , Encéfalo , Cromatina , Humanos , Leucocitos , Ratones , Secuencias Reguladoras de Ácidos Nucleicos
4.
Nat Biomed Eng ; 3(12): 1009-1019, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31285581

RESUMEN

In breast cancer, the increased stiffness of the extracellular matrix is a key driver of malignancy. Yet little is known about the epigenomic changes that underlie the tumorigenic impact of extracellular matrix mechanics. Here, we show in a three-dimensional culture model of breast cancer that stiff extracellular matrix induces a tumorigenic phenotype through changes in chromatin state. We found that increased stiffness yielded cells with more wrinkled nuclei and with increased lamina-associated chromatin, that cells cultured in stiff matrices displayed more accessible chromatin sites, which exhibited footprints of Sp1 binding, and that this transcription factor acts along with the histone deacetylases 3 and 8 to regulate the induction of stiffness-mediated tumorigenicity. Just as cell culture on soft environments or in them rather than on tissue-culture plastic better recapitulates the acinar morphology observed in mammary epithelium in vivo, mammary epithelial cells cultured on soft microenvironments or in them also more closely replicate the in vivo chromatin state. Our results emphasize the importance of culture conditions for epigenomic studies, and reveal that chromatin state is a critical mediator of mechanotransduction.


Asunto(s)
Neoplasias de la Mama , Cromatina , Epitelio , Fenotipo , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Células Epiteliales , Epitelio/patología , Matriz Extracelular/metabolismo , Femenino , Humanos , Mecanotransducción Celular , Factor de Transcripción Sp1 , Factores de Transcripción , Microambiente Tumoral
5.
J R Soc Interface ; 15(141)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618526

RESUMEN

Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.


Asunto(s)
Investigación Biomédica/tendencias , Tecnología Biomédica/tendencias , Aprendizaje Profundo/tendencias , Algoritmos , Investigación Biomédica/métodos , Toma de Decisiones , Atención a la Salud/métodos , Atención a la Salud/tendencias , Enfermedad/genética , Diseño de Fármacos , Registros Electrónicos de Salud/tendencias , Humanos , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA