Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hippocampus ; 34(5): 241-260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415962

RESUMEN

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Asunto(s)
Lóbulo Temporal , Humanos , Lóbulo Temporal/patología , Neuroanatomía/métodos , Masculino , Giro Parahipocampal/patología , Giro Parahipocampal/diagnóstico por imagen , Femenino , Anciano , Corteza Entorrinal/patología , Corteza Entorrinal/anatomía & histología , Laboratorios , Anciano de 80 o más Años
2.
Alzheimers Dement ; 19(6): 2355-2364, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36464907

RESUMEN

INTRODUCTION: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. METHODS: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. RESULTS: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. CONCLUSION: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. HIGHLIGHTS: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Enfermedades Neurodegenerativas/complicaciones , Imagen por Resonancia Magnética , Proteínas de Unión al ADN
3.
Acta Neuropathol ; 144(6): 1103-1116, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871112

RESUMEN

Alzheimer's disease neuropathologic change (ADNC) is clinically heterogenous and can present with a classic multidomain amnestic syndrome or focal non-amnestic syndromes. Here, we investigated the distribution and burden of phosphorylated and C-terminally cleaved tau pathologies across hippocampal subfields and cortical regions among phenotypic variants of Alzheimer's disease (AD). In this study, autopsy-confirmed patients with ADNC, were classified into amnestic (aAD, N = 40) and non-amnestic (naAD, N = 39) groups based on clinical criteria. We performed digital assessment of tissue sections immunostained for phosphorylated-tau (AT8 detects pretangles and mature tangles), D421-truncated tau (TauC3, a marker for mature tangles and ghost tangles), and E391-truncated tau (MN423, a marker that primarily detects ghost tangles), in hippocampal subfields and three cortical regions. Linear mixed-effect models were used to test regional and group differences while adjusting for demographics. Both groups showed AT8-reactivity across hippocampal subfields that mirrored traditional Braak staging with higher burden of phosphorylated-tau in subregions implicated as affected early in Braak staging. The burden of phosphorylated-tau and TauC3-immunoreactive tau in the hippocampus was largely similar between the aAD and naAD groups. In contrast, the naAD group had lower relative distribution of MN423-reactive tangles in CA1 (ß = - 0.2, SE = 0.09, p = 0.001) and CA2 (ß = - 0.25, SE = 0.09, p = 0.005) compared to the aAD. While the two groups had similar levels of phosphorylated-tau pathology in cortical regions, there was higher burden of TauC3 reactivity in sup/mid temporal cortex (ß = 0.16, SE = 0.07, p = 0.02) and MN423 reactivity in all cortical regions (ß = 0.4-0.43, SE = 0.09, p < 0.001) in the naAD compared to aAD. In conclusion, AD clinical variants may have a signature distribution of overall phosphorylated-tau pathology within the hippocampus reflecting traditional Braak staging; however, non-amnestic AD has greater relative mature tangle pathology in the neocortex compared to patients with clinical amnestic AD, where the hippocampus had greatest relative burden of C-terminally cleaved tau reactivity. Thus, varying neuronal susceptibility to tau-mediated neurodegeneration may influence the clinical expression of ADNC.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Hipocampo/patología , Lóbulo Temporal/metabolismo , Ovillos Neurofibrilares/patología
4.
Brain ; 144(9): 2784-2797, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34259858

RESUMEN

Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.


Asunto(s)
Mapeo Encefálico/métodos , Imagenología Tridimensional/métodos , Ovillos Neurofibrilares/patología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
5.
Proc Natl Acad Sci U S A ; 115(16): 4252-4257, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29592955

RESUMEN

Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 µm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Atlas como Asunto , Hipocampo/patología , Imagen por Resonancia Magnética , Neuroimagen , Anciano , Atrofia , Giro Dentado/patología , Humanos , Imagenología Tridimensional , Tamaño de los Órganos
6.
Hippocampus ; 30(6): 545-564, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31675165

RESUMEN

Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.


Asunto(s)
Bases de Datos Factuales/tendencias , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Imagen por Resonancia Magnética/tendencias , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Hum Brain Mapp ; 41(16): 4704-4717, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32845545

RESUMEN

A major focus of Alzheimer's disease (AD) research has been finding sensitive outcome measures to disease progression in preclinical AD, as intervention studies begin to target this population. We hypothesize that tailored measures of longitudinal change of the medial temporal lobe (MTL) subregions (the sites of earliest cortical tangle pathology) are more sensitive to disease progression in preclinical AD compared to standard cognitive and plasma NfL measures. Longitudinal T1-weighted MRI of 337 participants were included, divided into amyloid-ß negative (Aß-) controls, cerebral spinal fluid p-tau positive (T+) and negative (T-) preclinical AD (Aß+ controls), and early prodromal AD. Anterior/posterior hippocampus, entorhinal cortex, Brodmann areas (BA) 35 and 36, and parahippocampal cortex were segmented in baseline MRI using a novel pipeline. Unbiased change rates of subregions were estimated using MRI scans within a 2-year-follow-up period. Experimental results showed that longitudinal atrophy rates of all MTL subregions were significantly higher for T+ preclinical AD and early prodromal AD than controls, but not for T- preclinical AD. Posterior hippocampus and BA35 demonstrated the largest group differences among hippocampus and MTL cortex respectively. None of the cross-sectional MTL measures, longitudinal cognitive measures (PACC, ADAS-Cog) and cross-sectional or longitudinal plasma NfL reached significance in preclinical AD. In conclusion, longitudinal atrophy measurements reflect active neurodegeneration and thus are more directly linked to active disease progression than cross-sectional measurements. Moreover, accelerated atrophy in preclinical AD seems to occur only in the presence of concomitant tau pathology. The proposed longitudinal measurements may serve as efficient outcome measures in clinical trials.


Asunto(s)
Enfermedad de Alzheimer/patología , Progresión de la Enfermedad , Hipocampo/patología , Giro Parahipocampal/patología , Corteza Perirrinal/patología , Síntomas Prodrómicos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/líquido cefalorraquídeo , Atrofia/patología , Estudios Transversales , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Giro Parahipocampal/diagnóstico por imagen , Corteza Perirrinal/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Proteínas tau/líquido cefalorraquídeo
8.
Alzheimers Dement ; 15(10): 1286-1295, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31495603

RESUMEN

INTRODUCTION: It is unclear the degree to which tau pathology in the medial temporal lobe (MTL) measured by 18F-flortaucipir positron emission tomography relates to MTL subregional atrophy and whether this relationship differs between amyloid-ß-positive and amyloid-ß-negative individuals. METHODS: We analyzed correlation of MTL 18F-flortaucipir uptake with MTL subregional atrophy measured with high-resolution magnetic resonance imaging in a region of interest and regional thickness analysis and determined the relationship between memory performance and positron emission tomography and magnetic resonance imaging measures. RESULTS: Both groups showed strong correlations between 18F-flortaucipir uptake and atrophy, with similar spatial patterns. Effects in the rhinal cortex recapitulated Braak staging. Correlations of memory recall with atrophy and tracer uptake were observed. DISCUSSION: Correlation patterns between tau burden and atrophy in the amyloid-ß-negative group mimicking early Braak stages suggests that 18F-flortaucipir is sensitive to tau pathology in primary age-related tauopathy. Correlations of imaging measures with memory performance indicate that this pathology is associated with poorer cognition.


Asunto(s)
Amiloide/metabolismo , Atrofia/metabolismo , Tauopatías/metabolismo , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Carbolinas , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Pruebas Neuropsicológicas/estadística & datos numéricos , Tomografía de Emisión de Positrones
9.
Nat Commun ; 15(1): 4803, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839876

RESUMEN

Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer's Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Ovillos Neurofibrilares , Lóbulo Temporal , Proteínas tau , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Proteínas tau/metabolismo , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética/métodos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Anciano de 80 o más Años , Autopsia , Neuroimagen/métodos , Persona de Mediana Edad , Imágenes Post Mortem
10.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37292729

RESUMEN

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.

11.
Alzheimers Res Ther ; 15(1): 79, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041649

RESUMEN

BACKGROUND: Crucial to the success of clinical trials targeting early Alzheimer's disease (AD) is recruiting participants who are more likely to progress over the course of the trials. We hypothesize that a combination of plasma and structural MRI biomarkers, which are less costly and non-invasive, is predictive of longitudinal progression measured by atrophy and cognitive decline in early AD, providing a practical alternative to PET or cerebrospinal fluid biomarkers. METHODS: Longitudinal T1-weighted MRI, cognitive (memory-related test scores and clinical dementia rating scale), and plasma measurements of 245 cognitively normal (CN) and 361 mild cognitive impairment (MCI) patients from ADNI were included. Subjects were further divided into ß-amyloid positive/negative (Aß+/Aß-)] subgroups. Baseline plasma (p-tau181 and neurofilament light chain) and MRI-based structural medial temporal lobe subregional measurements and their association with longitudinal measures of atrophy and cognitive decline were tested using stepwise linear mixed effect modeling in CN and MCI, as well as separately in the Aß+/Aß- subgroups. Receiver operating characteristic (ROC) analyses were performed to investigate the discriminative power of each model in separating fast and slow progressors (first and last terciles) of each longitudinal measurement. RESULTS: A total of 245 CN (35.0% Aß+) and 361 MCI (53.2% Aß+) participants were included. In the CN and MCI groups, both baseline plasma and structural MRI biomarkers were included in most models. These relationships were maintained when limited to the Aß+ and Aß- subgroups, including Aß- CN (normal aging). ROC analyses demonstrated reliable discriminative power in identifying fast from slow progressors in MCI [area under the curve (AUC): 0.78-0.93] and more modestly in CN (0.65-0.73). CONCLUSIONS: The present data support the notion that plasma and MRI biomarkers, which are relatively easy to obtain, provide a prediction for the rate of future cognitive and neurodegenerative progression that may be particularly useful in clinical trial stratification and prognosis. Additionally, the effect in Aß- CN indicates the potential use of these biomarkers in predicting a normal age-related decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Disfunción Cognitiva/líquido cefalorraquídeo , Atrofia
12.
NMR Biomed ; 25(1): 104-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21618305

RESUMEN

The purpose of this study was to use high-resolution diffusion tensor imaging (DTI) to investigate the association between DTI metrics and sociability in BALB/c inbred mice. The sociability of prepubescent (30-day-old) BALB/cJ mice was operationally defined as the time that the mice spent sniffing a stimulus mouse in a social choice test. High-resolution ex vivo DTI data on 12 BALB/cJ mouse brains were acquired using a 9.4-T vertical-bore magnet. Regression analysis was conducted to investigate the association between DTI metrics and sociability. Significant positive regression (p < 0.001) between social sniffing time and fractional anisotropy was found in 10 regions located in the thalamic nuclei, zona incerta/substantia nigra, visual/orbital/somatosensory cortices and entorhinal cortex. In addition, significant negative regression (p < 0.001) between social sniffing time and mean diffusivity was found in five areas located in the sensory cortex, motor cortex, external capsule and amygdaloid region. In all regions showing significant regression with either the mean diffusivity or fractional anisotropy, the tertiary eigenvalue correlated negatively with the social sniffing time. This study demonstrates the feasibility of using DTI to detect brain regions associated with sociability in a mouse model system.


Asunto(s)
Conducta Animal/fisiología , Imagen de Difusión Tensora/métodos , Conducta Social , Animales , Anisotropía , Encéfalo/citología , Conducta de Elección/fisiología , Análisis por Conglomerados , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Análisis de Regresión , Factores de Tiempo
13.
Neuroimage Clin ; 33: 102913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34952351

RESUMEN

Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer's disease neuropathologic change (ADNC). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7 T and histopathology to the study autopsy-confirmed FTLD-Tau (n = 4) and FTLD-TDP (n = 3), relative to ADNC disease-control brains with antemortem clinical symptoms of frontotemporal dementia (n = 2), and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP subtypes, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from healthy control and ADNC brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may eventually offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Proteínas de Unión al ADN , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/patología , Humanos , Inflamación/diagnóstico por imagen , Hierro , Imagen por Resonancia Magnética , Proteínas tau
14.
Neurobiol Aging ; 98: 231-241, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33341654

RESUMEN

T1-magnetic resonance imaging (MRI) studies report early atrophy in the left anterior temporal lobe, especially the perirhinal cortex, in semantic variant primary progressive aphasia (svPPA). Improved segmentation protocols using high-resolution T2-MRI have enabled fine-grained medial temporal lobe (MTL) subregional measurements, which may provide novel information on the atrophy pattern and disease progression in svPPA. We aimed to investigate the MTL subregional atrophy pattern cross-sectionally and longitudinally in patients with svPPA as compared with controls and patients with Alzheimer's disease (AD). MTL subregional volumes were obtained using the Automated Segmentation for Hippocampal Subfields software from high-resolution T2-MRIs in 15 svPPA, 37 AD, and 23 healthy controls. All MTL volumes were corrected for intracranial volume and parahippocampal cortices for slice number. Longitudinal atrophy rates of all subregions were obtained using an unbiased deformation-based morphometry pipeline in 6 svPPA patients, 9 controls, and 12 AD patients. Cross-sectionally, significant volume loss was observed in svPPA compared with controls in the left MTL, right cornu ammonis 1 (CA1), Brodmann area (BA)35, and BA36 (subdivisions of the perirhinal cortex). Compared with AD patients, svPPA patients had significantly smaller left CA1, BA35, and left and right BA36 volumes. Longitudinally, svPPA patients had significantly greater atrophy rates of left and right BA36 than controls but not relative to AD patients. Fine-grained analysis of MTL atrophy patterns provides information about the evolution of atrophy in svPPA. These results indicate that MTL subregional measures might be useful markers to track disease progression or for clinical trials in svPPA.


Asunto(s)
Afasia Progresiva Primaria/patología , Lóbulo Temporal/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Afasia Progresiva Primaria/diagnóstico por imagen , Atrofia , Biomarcadores , Imagen de Difusión Tensora , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Corteza Perirrinal/diagnóstico por imagen , Corteza Perirrinal/patología , Lóbulo Temporal/diagnóstico por imagen
15.
Acta Neuropathol Commun ; 9(1): 173, 2021 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-34689831

RESUMEN

Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer's disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.


Asunto(s)
Imagenología Tridimensional/métodos , Ovillos Neurofibrilares/patología , Neuroimagen/métodos , Lóbulo Temporal/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Temporal/patología , Proteínas tau
17.
J Alzheimers Dis ; 62(1): 85-92, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29439350

RESUMEN

Neurofibrillary tangle (NFT) pathology is linked to neurodegeneration in the medial temporal lobe (MTL). Using a tailored pipeline, we correlated atrophy rate, as measured from retrospective longitudinal MRI, with NFT burden, measured from 18F-AV-1451 PET, within MTL regions of earliest NFT pathology. In amyloid-ß positive but not amyloid-ß negative individuals, we found significant correlation between 18F-AV-1451 uptake and atrophy rate that was strongest in the transentorhinal cortex, the first region with NFT pathology. This supports the role of NFTs in driving neurodegeneration and the utility of 18F-AV-1451 PET and structural measurement of transentorhinal cortex in tracking early tau-mediated disease progression.


Asunto(s)
Ovillos Neurofibrilares/metabolismo , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo , Anciano , Atrofia , Carbolinas , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones , Radiofármacos , Estudios Retrospectivos , Lóbulo Temporal/patología
18.
Shape Med Imaging (2018) ; 11167: 28-37, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31008460

RESUMEN

The perirhinal cortex (PRC) is a site of early neurofibrillary tangle (NFT) pathology in Alzheimer's disease (AD). Subtle morphological changes in the PRC have been reported in MRI studies of early AD, which has significance for clinical trials targeting preclinical AD. However, the PRC exhibits considerable anatomical variability with multiple discrete variants described in the neuroanatomy literature. We hypothesize that different anatomical variants are associated with different patterns of AD-related effects in the PRC. Single-template approaches conventionally used for automated image-based brain morphometry are ill-equipped to test this hypothesis. This study uses graph-based groupwise registration and diffeomorphic landmark matching with geodesic shooting to build statistical shape models of discrete PRC variants and examine variant-specific effects of AD on PRC shape and thickness. Experimental results demonstrate that the statistical models recover the folding patterns of the known PRC variants and capture the expected shape variability within the population. By applying the proposed pipeline to a large dataset with subjects from different stages in the AD spectrum, we find 1) a pattern of cortical thinning consistent with the NFT pathology progression, 2) different patterns of the initial spatial distribution of cortical thinning between anatomical variants, and 3) an effect of AD on medial temporal lobe shape. As such, the proposed pipeline could have important utility in the early detection and monitoring of AD.

19.
Neurobiol Aging ; 66: 49-58, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518752

RESUMEN

We examined the relationship between in vivo estimates of tau deposition as measured by 18F-AV-1451 tau positron emission tomography imaging and cross-sectional cortical thickness, as well as rates of antecedent cortical thinning measured from magnetic resonance imaging in individuals with and without evidence of cerebral amyloid in 63 participants from the Alzheimer's Disease Neuroimaging Initiative study, including 32 cognitively normal individuals (mean age 74 years), 27 patients with mild cognitive impairment (mean age 76.8 years), and 4 patients diagnosed with Alzheimer's disease (mean age 80 years). We hypothesized that structural measures would correlate with 18F-AV-1451 in a spatially local manner and that this correlation would be stronger for longitudinal compared to cross-sectional measures of cortical thickness and in those with cerebral amyloid versus those without. Cross-sectional and longitudinal estimates of voxelwise atrophy were made from whole brain maps of cortical thickness and rates of thickness change. In amyloid-ß-positive individuals, the correlation of voxelwise atrophy across the whole brain with a summary measure of medial temporal lobe (MTL) 18F-AV-1451 uptake demonstrated strong local correlations in the MTL with longitudinal atrophy that was weaker in cross-sectional analysis. Similar effects were seen in correlations between 31 bilateral cortical regions of interest. In addition, several nonlocal correlations between atrophy and 18F-AV-1451 uptake were observed, including association between MTL atrophy and 18F-AV-1451 uptake in parietal lobe regions of interest such as the precuneus. Amyloid-ß-negative individuals only showed weaker correlations in data uncorrected for multiple comparisons. While these data replicate previous reports of associations between 18F-AV-1451 uptake and cross-sectional structural measures, the current results demonstrate a strong relationship with longitudinal measures of atrophy. These data support the notion that in vivo measures of tau pathology are tightly linked to the rate of neurodegenerative change.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Carbolinas/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Imagen de Difusión por Resonancia Magnética , Neuroimagen , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Atrofia , Encéfalo/patología , Disfunción Cognitiva/patología , Estudios Transversales , Femenino , Radioisótopos de Flúor , Humanos , Estudios Longitudinales , Masculino , Radiofármacos
20.
J Alzheimers Dis ; 63(1): 217-225, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29614654

RESUMEN

BACKGROUND: Multi-atlas segmentation, a popular technique implemented in the Automated Segmentation of Hippocampal Subfields (ASHS) software, utilizes multiple expert-labelled images ("atlases") to delineate medial temporal lobe substructures. This multi-atlas method is increasingly being employed in early Alzheimer's disease (AD) research, it is therefore becoming important to know how the construction of the atlas set in terms of proportions of controls and patients with mild cognitive impairment (MCI) and/or AD affects segmentation accuracy. OBJECTIVE: To evaluate whether the proportion of controls in the training sets affects the segmentation accuracy of both controls and patients with MCI and/or early AD at 3T and 7T. METHODS: We performed cross-validation experiments varying the proportion of control subjects in the training set, ranging from a patient-only to a control-only set. Segmentation accuracy of the test set was evaluated by the Dice similarity coeffiecient (DSC). A two-stage statistical analysis was applied to determine whether atlas composition is linked to segmentation accuracy in control subjects and patients, for 3T and 7T. RESULTS: The different atlas compositions did not significantly affect segmentation accuracy at 3T and for patients at 7T. For controls at 7T, including more control subjects in the training set significantly improves the segmentation accuracy, but only marginally, with the maximum of 0.0003 DSC improvement per percent increment of control subject in the training set. CONCLUSION: ASHS is robust in this study, and the results indicate that future studies investigating hippocampal subfields in early AD populations can be flexible in the selection of their atlas compositions.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA