RESUMEN
The immunoglobulin heavy-chain (IgH) gene locus undergoes radial repositioning within the nucleus and locus contraction in preparation for gene recombination. We demonstrate that IgH locus conformation involves two levels of chromosomal compaction. At the first level, the locus folds into several multilooped domains. One such domain at the 3' end of the locus requires an enhancer, Eµ; two other domains at the 5' end are Eµ independent. At the second level, these domains are brought into spatial proximity by Eµ-dependent interactions with specific sites within the V(H) region. Eµ is also required for radial repositioning of IgH alleles, indicating its essential role in large-scale chromosomal movements in developing lymphocytes. Our observations provide a comprehensive view of the conformation of IgH alleles in pro-B cells and the mechanisms by which it is established.
Asunto(s)
Linfocitos B/metabolismo , Núcleo Celular/genética , Cromatina/química , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Factor de Unión a CCCTC , Elementos de Facilitación Genéticos , Región Variable de Inmunoglobulina , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Proteínas Represoras/metabolismo , Recombinación V(D)J , Factor de Transcripción YY1/metabolismoRESUMEN
Genes encoding immunoglobulin heavy chains (Igh) are assembled by rearrangement of variable (V(H)), diversity (D(H)) and joining (J(H)) gene segments. Three critical constraints govern V(H) recombination. These include timing (V(H) recombination follows D(H) recombination), precision (V(H) gene segments recombine only to DJ(H) junctions) and allele specificity (V(H) recombination is restricted to DJ(H)-recombined alleles). Here we provide a model for these universal features of V(H) recombination. Analyses of DJ(H)-recombined alleles showed that DJ(H) junctions were selectively epigenetically marked, became nuclease sensitive and bound RAG recombinase proteins, which thereby permitted D(H)-associated recombination signal sequences to initiate the second step of Igh gene assembly. We propose that V(H) recombination is precise, because these changes did not extend to germline D(H) segments located 5' of the DJ(H) junction.
Asunto(s)
Linfocitos B/metabolismo , Epigénesis Genética , Reordenamiento Génico de Cadena Pesada de Linfocito B , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Cadenas Pesadas de Inmunoglobulina/genética , Región de Unión de la Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Animales , Línea Celular , Cromatina/metabolismo , Histonas/metabolismo , Ratones , Células Precursoras de Linfocitos B/inmunología , Células Precursoras de Linfocitos B/metabolismo , Recombinasas/metabolismo , Recombinación GenéticaRESUMEN
Morphological features of the nanoform of a phospholipid composition (NFPh), which can be used as an individual pharmaceutic agent or as a platform for designing drug delivery systems, have been studied using atomic force microscopy (AFM). NFPh has been developed, and its characteristics have been investigated using conventional drug analysis methods, including the determination of the mean diameter of nanosized vesicles in the emulsion via dynamic light scattering (DLS). Using DLS, the mean diameter of the vesicles was found to be ~20 nm. AFM imaging of the surface has revealed four types of objects related to NFPh: (1) compact objects; (2) layer fragments; (3) lamellar structures; and (4) combined objects containing the compact and extended parts. For type (4) objects, it has been found that the geometric ratio of the volume of the convex part to the total area of the entire object is constant. It has been proposed that these objects formed owing to fusion of vesicles of the same size (with the same surface-to-volume ratio). It has been shown that this is possible for vesicles with diameters of 20 nm. This diameter is in good coincidence with the value obtained using DLS.
Asunto(s)
Fosfolípidos , Fosfolípidos/química , Microscopía de Fuerza Atómica/métodos , Dispersión Dinámica de LuzRESUMEN
Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.
Asunto(s)
Nanoporos , Peroxidasa de Rábano Silvestre/química , Ácidos Sulfónicos/química , Benzotiazoles/química , Sustancias MacromolecularesRESUMEN
Collagen is a structural protein whose internal cross-linking critically determines the properties and functions of connective tissue. Knowing how the cross-linking of collagen changes with age is key to understanding why the mechanical properties of tissues change over a lifetime. The current scientific consensus is that collagen cross-linking increases with age and that this increase leads to tendon stiffening. Here, we show that this view should be reconsidered. Using MS-based analyses, we demonstrated that during aging of healthy C57BL/6 mice, the overall levels of collagen cross-linking in tail tendon decreased with age. However, the levels of lysine glycation in collagen, which is not considered a cross-link, increased dramatically with age. We found that in 16-week-old diabetic db/db mice, glycation reaches levels similar to those observed in 98-week-old C57BL/6 mice, while the other cross-links typical of tendon collagen either decreased or remained the same as those observed in 20-week-old WT mice. These results, combined with findings from mechanical testing of tendons from these mice, indicate that overall collagen cross-linking in mouse tendon decreases with age. Our findings also reveal that lysine glycation appears to be an important factor that contributes to tendon stiffening with age and in diabetes.
Asunto(s)
Envejecimiento/metabolismo , Colágeno/metabolismo , Cola (estructura animal)/metabolismo , Tendones/metabolismo , Animales , Glicosilación , RatonesRESUMEN
In situ MAS NMR studies on the monitoring of hydrothermal synthesis of zeolites are reviewed. The first part of the review contains information on the experimental techniques used for the inâ situ NMR studies in static and MAS conditions. In the second part, the main capabilities of the inâ situ 1 H, 11 B, 13 C, 14 N, 19 F, 23 Na, 27 Al, 29 Si and 31 P MAS NMR for the elucidation of the mechanism of hydrothermal synthesis of zeolites are examined and the data on NMR lines identification are summarized. In the last part the main application areas of the techniques are considered and illustrated with examples taken from the mechanistic studies of zeolites A, X, MFI and BEA synthesis. A cross-reference index between the materials studied, the experimental approaches used, the mechanistic information obtained, and the corresponding literature sources is established.
RESUMEN
The aim of this study was to establish the mechanisms of action of a novel liposomal nitric oxide (NO) carrier on large-conductance Ca2+-activated channels (BKCa or Maxi-K) expressed in vascular smooth muscle cells (VSMCs) isolated from the rat main pulmonary artery (MPA). Experimental design comprised of both whole-cell and cell-attached single-channel recordings using the patch-clamp techniques. The liposomal form of NO, Lip(NO), increased whole-cell outward K+ currents in a dose dependent manner while shifting the activation curve negatively by about 50 mV with respect to unstimulated cells with the EC50 value of 0.55 ± 0.17 µM. At the single channel level, Lip(NO) increased the probability of the open state (Po) of Maxi-K channels from 0.0020 ± 0.0008 to 0.74 ± 0.02 with half-maximal activation occurring at 4.91 ± 0.01 µM, while sub-maximal activation was achieved at 10-5 M Lip(NO). Channel activation was mainly due to significant decrease in the mean closed dwell time (about 500-fold), rather than an increase in the mean open dwell time, which was comparatively modest (about twofold). There was also a slight decrease in the amplitude of the elementary Maxi-K currents (approximately 15%) accompanied by an increase in current noise, which might indicate some non-specific effects of Lip(NO) on the plasma membrane itself and/or on the phospholipids environment of the channels. In conclusion, the activating action of Lip(NO) on the Maxi-K channel is due to the destabilization of the closed conformation of the channel protein, which causes its more frequent openings and, accordingly, increases the probability of channel transition to its open state.
Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Óxido Nítrico , Animales , Calcio/metabolismo , Liposomas , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Arteria Pulmonar/metabolismo , RatasRESUMEN
Cytostatic chemotherapeutics provide a classical means to treat cancer, but conventional treatments have not increased in efficacy in the past years, warranting a search for new approaches to therapy. The aim of the study was, therefore, to obtain methacrylic acid (MAA) (co)polymers and to study their immunopharmacological properties. 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDSPA) and 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) were used as reversible chain transfer agents. Experiments were carried out in Wistar rats. The MTT assay was used to evaluate the cytotoxic effect of the polymeric systems on peritoneal macrophages. An experimental tumor model was obtained by grafting RMK-1 breast cancer cells. Serum cytokine levels of tumor-bearing rats were analyzed. The chain transfer agents employed in classical radical polymerization substantially reduced the molecular weight of the resulting polymers, but a narrow molecular weight distribution was achieved only with CDSPA and high CPDT concentrations. Toxicity was not observed when incubating peritoneal macrophages with polymeric systems. In tumor-bearing rats, the IL-10 concentration was 1.7 times higher and the IL-17 concentration was less than half that of intact rats. Polymeric systems decreased the IL-10 concentration and normalized the IL-17 concentration in tumor-bearing rats. The maximum effect was observed for a MAA homopolymer with a high molecular weight. The anion-active polymers proposed as carrier constituents are promising for further studies and designs of carrier constituents of drug derivatives.
Asunto(s)
Antineoplásicos/inmunología , Antineoplásicos/farmacología , Portadores de Fármacos/química , Ácidos Polimetacrílicos/farmacología , Animales , Antineoplásicos/administración & dosificación , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Citocinas/metabolismo , Femenino , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Peso Molecular , Ácidos Polimetacrílicos/administración & dosificación , Ratas WistarRESUMEN
MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).
Asunto(s)
Trastorno del Espectro Autista/sangre , Proteínas Sanguíneas/genética , MicroARN Circulante/sangre , Microscopía de Fuerza Atómica/instrumentación , Adulto , Proteínas Sanguíneas/metabolismo , Niño , MicroARN Circulante/metabolismo , Femenino , Humanos , Masculino , Microscopía de Fuerza Atómica/métodos , Persona de Mediana Edad , Canales de Potasio con Entrada de Voltaje/sangre , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Atomic force microscopy (AFM)-based fishing is a promising method for the detection of low-abundant proteins. This method is based on the capturing of the target proteins from the analyzed solution onto a solid substrate, with subsequent counting of the captured protein molecules on the substrate surface by AFM. Protein adsorption onto the substrate surface represents one of the key factors determining the capturing efficiency. Accordingly, studying the factors influencing the protein adsorbability onto the substrate surface represents an actual direction in biomedical research. Herein, the influence of water motion in a flow-based system on the protein adsorbability and on its enzymatic activity has been studied with an example of horseradish peroxidase (HRP) enzyme by AFM, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and conventional spectrophotometry. In the experiments, HRP solution was incubated in a setup modeling the flow section of a biosensor communication. The measuring cell with the protein solution was placed near a coiled silicone pipe, through which water was pumped. The adsorbability of the protein onto the surface of the mica substrate has been studied by AFM. It has been demonstrated that incubation of the HRP solution near the coiled silicone pipe with flowing water leads to an increase in its adsorbability onto mica. This is accompanied by a change in the enzyme's secondary structure, as has been revealed by ATR-FTIR. At the same time, its enzymatic activity remains unchanged. The results reported herein can be useful in the development of models describing the influence of liquid flow on the properties of enzymes and other proteins. The latter is particularly important for the development of biosensors for biomedical applications-particularly for serological analysis, which is intended for the early diagnosis of various types of cancer and infectious diseases. Our results should also be taken into account in studies of the effects of protein aggregation on hemodynamics, which plays a key role in human body functioning.
Asunto(s)
Peroxidasa de Rábano Silvestre/aislamiento & purificación , Agua/química , Técnicas Biosensibles , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Microscopía de Fuerza Atómica , Estructura Secundaria de Proteína , Siliconas/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
The article proposes a new way for visualization of mesopores and quantitative evaluation of the pore structure in zeolite crystals. The approach is based on platinum tracking inside the zeolite material after its incorporation from a gaseous precursor using an electron beam prior to preparing a TEM specimen by the focused ion beam technique. The pores in mesoporous silica and purely microporous zeolite Y were visualized in TEM images in a demonstration of the capabilities of the approach. Finally, platinum tracking was used for studying the pore structure of zeolite Y (CBV 720) containing mesopores both inside the crystal and those emerging at its surface, which were unambiguously distinguished from each other. The obtained sizes of the mesopores and the calculated material porosity are in good agreement with the results obtained by the low-temperature argon sorption isotherms method.
RESUMEN
Hypoxic pulmonary vasoconstriction (HPV) is the most important feature of intact lung circulation that matches local blood perfusion to ventilation. The main goal of this work was to study the effects of diabetes on the development of HPV in rats. The experimental design comprised diabetes mellitus induction by streptozotocin, video-morphometric measurements of the lumen area of intrapulmonary arteries (iPAs) using perfused lung tissue slices and patch-clamp techniques. It was shown that iPA lumen size was significantly reduced under physical and chemical hypoxia (7-10 mm Hg) in normal iPA, but, on the contrary, it clearly increased in diabetic lung slices. The amplitude of the outward K+ current in diabetic iPAs smooth muscle cells (SMCs) was two-fold greater than that seen in healthy cells. Chemical hypoxia led to significant decrease in the amplitude of the K+ outward current in healthy iPA SMCs while it was without effect in diabetic cells. The data obtained clearly indicate a significant dysregulation of vascular tone in pulmonary circulation under diabetes, ie diabetes damages the adaptive mechanism for regulating blood flow from poorly ventilated to better ventilated regions of the lung under hypoxia. This effect could be clinically important for patients with diabetes who have acute or chronic lung diseases associated with the lack of blood oxygenation.
Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/fisiopatología , Hipoxia/complicaciones , Arteria Pulmonar/fisiopatología , Vasoconstricción , Animales , Fenómenos Electrofisiológicos , Masculino , Potasio/metabolismo , Arteria Pulmonar/metabolismo , Ratas , Ratas WistarRESUMEN
Possessing unique physical and chemical properties, C60 fullerenes are arising as a potential nanotechnological tool that can strongly affect various biological processes. Recent molecular modeling studies have shown that C60 fullerenes can interact with ion channels, but there is lack of data about possible effects of C60 molecule on ion channels expressed in smooth muscle cells (SMC). Here we show both computationally and experimentally that water-soluble pristine C60 fullerene strongly inhibits the large conductance Ca2+-dependent K+ (BKCa), but not voltage-gated K+ (Kv) channels in pulmonary artery SMC. Both molecular docking simulations and analysis of single channel activity indicate that C60 fullerene blocks BKCa channel pore in its open state. In functional tests, C60 fullerene enhanced phenylephrine-induced contraction of pulmonary artery rings by about 25% and reduced endothelium-dependent acetylcholine-induced relaxation by up to 40%. These findings suggest a novel strategy for biomedical application of water-soluble pristine C60 fullerene in vascular dysfunction.
Asunto(s)
Fulerenos/farmacología , Proteínas de Interacción con los Canales Kv/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/citología , Animales , Dispersión Dinámica de Luz , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Ratas WistarRESUMEN
Ultraviolet (UV) radiation has a plethora of effects on human tissues. In the UV spectrum, wavelengths above 320 nm fall into the UVA range, and for these, it has been shown that they induce reactive oxygen species (ROS), DNA mutations and are capable to induce melanoma in mice. In addition to this, it was recently shown that UVA irradiation and UVA-induced ROS also increase glucose metabolism of melanoma cells. UVA irradiation causes a persistent increase in glucose consumption, accompanied by increased glycolysis, increased lactic acid production and activation of the pentose phosphate pathway. Furthermore, it was shown that the enhanced secretion of lactic acid is important for invasion of melanoma in vitro. The current knowledge of this link between UVA, metabolism and melanoma, possible mechanisms of UVA-induced glucose metabolism and their starting points are discussed in this review with focus on ROS- and UVA-induced cellular stress signalling, DNA damage signalling and DNA repair systems. When looking at the benefits of UVA-induced glucose metabolism, it becomes apparent that there are more advantages of these metabolic changes than one would expect. Besides the role of lactic acid as initiator of protease expression and invasion, its role for immune escape of melanoma cells and the pentose phosphate pathway-derived nicotinamide adenine dinucleotide phosphate (NADPH) as part of a ROS detoxification strategy are discussed.
Asunto(s)
Glucosa/metabolismo , Melanoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Supervivencia Celular/efectos de la radiación , Daño del ADN , Glucólisis/efectos de la radiación , Humanos , Ácido Láctico/metabolismo , Melanoma/inmunología , Melanoma/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NADP/metabolismo , Invasividad Neoplásica , Vía de Pentosa Fosfato , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Pirúvico/metabolismo , Piel/metabolismo , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Escape del TumorRESUMEN
The mechanism of Zr-BEA hydrothermal synthesis in fluoride media has been investigated through the detailed characterization of samples obtained at different synthesis times by XRD, XRF, TGA, multinuclear solid-state NMR, FTIR, SEM, TEM with EDS, XAS, and nitrogen sorption. The synthetic procedure involved hydrothermal crystallization of the gel with the following composition: 1SiO2:0.54TEAOH:0.54HF:0.005ZrO2:5.6H2O. The formation of open and closed Lewis acid sites was monitored by FTIR spectroscopy of adsorbed CO, while coordination of Zr was studied by XAS. The results show that the formation of Zr-BEA proceeds by two steps. In the first step, pure silica BEA is crystallized via a solid-solid hydrogel rearrangement mechanism. Zirconium species are occluded in Si-BEA crystals in the form of Zr-rich silicate particles. These particles do not provide for any appreciable Lewis acidity. In the second step, Zr incorporation into T positions of the zeolite structure takes place, leading to the formation of closed Zr sites, which are partially converted into open sites at longer synthesis times. It is demonstrated that the content of open and closed sites can be tuned by variation of the synthesis time.
RESUMEN
The aim of the work was to study the influence of UV radiation of a spark discharge plasma and a mercury lamp on the state of membrane structures of peritoneal macrophages. The objects of the study were peritoneal macrophages of rats. The total number of cells after exposure and their viability were analyzed. Oxidative modification of proteins was recorded by fluorescence of tryptophan, tyrosine and products of non-enzymatic glycosylation of proteins. The concentration of sialic acids was determined spectrophotometrically, and the intensity of adhesion properties of cells was estimated by the ability to adhere to the plastic. It was shown that the radiation of a spark discharge plasma and UV lamp with the selected exposure regimes affect the structural components of membranes of peritoneal macrophages. The ability to adhere is enhanced by short exposure regimes, and under long-term conditions, adhesion properties decrease. The change in adhesion is probably associated with a decrease in the concentration of sialic acids on the cell surface, as well as with the intensification of oxidative modification of proteins. It has been established that spark plasma and UV lamp radiation promote the oxidation of aromatic amino acids and the accumulation of glycosylation products of proteins.
Asunto(s)
Macrófagos Peritoneales , Animales , Membrana Celular , Mercurio , Oxidación-Reducción , Ratas , Rayos UltravioletaRESUMEN
BACKGROUND: Celiac disease is an immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. CASE DESCRIPTION: A 45-year-old Caucasian woman presented with severe iron-deficient anemia and mild elevation of liver enzymes. Upper endoscopy was done in the context of evaluation of anemia, which revealed reduced duodenal folds and mosaic pattern of the mucosa, but also grade II esophageal varices and portal hypertensive gastropathy. Duodenal biopsy showed total villous atrophy, diffuse mainly lymphocytic infiltrate, presence of intra-epithelial lymphocytes. Serology test confirmed celiac disease by the typical pattern of high titer positive IgA and IgG antibodies to tissue transglutaminase. Liver biopsy was performed for staging and etiological evaluation, because laboratory screening ruled out common viral, metabolic and autoimmune liver disease. Liver morphology was consistent with chronic hepatitis without findings for extensive fibrosis. Our patient had poor dietary compliance, so we failed to established improvement of liver enzymes and resolution of anemia during follow-up. CONCLUSIONS: We would like to stress on the diverse clinical manifestations of celiac disease and the importance of serologic screening with antibodies to tissue transglutaminase in differential diagnosis of chronic liver disease.
Asunto(s)
Autoanticuerpos/inmunología , Enfermedad Celíaca/complicaciones , Hepatitis Autoinmune/etiología , Biopsia con Aguja , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/inmunología , Femenino , Estudios de Seguimiento , Hepatitis Autoinmune/patología , Hepatitis Crónica/etiología , Hepatitis Crónica/inmunología , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Factores de TiempoRESUMEN
The novel approach based on 33 S isotope tracing is proposed for the elucidation of hydrodesulfurization (HDS) mechanisms and characterization of molybdenum sulfide catalysts. The technique involves sulfidation of the catalyst with 33 S-isotope-labeled dihydrogen sulfide, followed by monitoring the fate of the 33 S isotope in the course of the hydrodesulfurization reaction by online mass spectrometry and characterization of the catalyst after the reaction by temperature-programmed oxidation with mass spectrometry (TPO-MS). The results point to different pathways of thiophene transformation over Co or Ni-promoted and unpromoted molybdenum sulfide catalysts, provide information on the role of promoter and give a key for the design of new efficient HDS catalysts.
RESUMEN
Time-resolved 13 C, 23 Na, 27 Al, and 29 Si MAS NMR has been applied inâ situ for monitoring the hydrothermal synthesis of zeolite BEA. Isotopic labelling with 29 Si and 13 C isotopes has been used to follow the fate of siliceous species and structure directing agent ((13 CH3 -CH2 )4 NOH). Two mechanistic pathways, namely solution-mediated and solid-solid hydrogel rearrangement have been distinguished for two synthesis procedures studied. The mechanisms of structure-directing behavior of TEA+ cations in two reaction pathways have been elucidated. The results show that multinuclear MAS NMR can serve as a superior tool for monitoring hydrothermal synthesis of various solids including zeolites, zeotypes, mesoporous materials, metal-organic frameworks and so on and for the design of novel outstanding materials for different applications.
RESUMEN
Multiple epigenetic marks have been proposed to contribute to the regulation of antigen receptor gene assembly via V(D)J recombination. Here we provide a comprehensive view of DNA methylation at the immunoglobulin heavy chain (IgH) gene locus prior to and during V(D)J recombination. DNA methylation did not correlate with the histone modification state on unrearranged alleles, indicating that these epigenetic marks were regulated independently. Instead, pockets of tissue-specific demethylation were restricted to DNase I hypersensitive sites within this locus. Though unrearranged diversity (D(H)) and joining (J(H)) gene segments were methylated, DJ(H) junctions created after the first recombination step were largely demethylated in pro-, pre-, and mature B cells. Junctional demethylation was highly localized, B-lineage-specific, and required an intact tissue-specific enhancer, Eµ. We propose that demethylation occurs after the first recombination step and may mark the junction for secondary recombination.