Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Acc Chem Res ; 55(7): 966-977, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35230087

RESUMEN

Photocatalytic and photoelectrochemical CO2 reduction of artificial photosynthesis is a promising chemical process to solve resource, energy, and environmental problems. An advantage of artificial photosynthesis is that solar energy is converted to chemical products using abundant water as electron and proton sources. It can be operated under ambient temperature and pressure. Especially, photocatalytic CO2 reduction employing a powdered material would be a low-cost and scalable system for practical use because of simplicity of the total system and simple mass-production of a photocatalyst material.In this Account, single particulate photocatalysts, Z-scheme photocatalysts, and photoelectrodes are introduced for artificial photosynthetic CO2 reduction. It is indispensable to use water as an electron donor (i.e., reasonable O2 evolution) but not to use a sacrificial reagent of a strong electron donor, for achievement of the artificial photosynthetic CO2 reduction accompanied by ΔG > 0. Confirmations of O2 evolution, a ratio of reacted e- to h+ estimated from obtained products, a turnover number, and a carbon source of a CO2 reduction product are discussed as the key points for evaluation of photocatalytic and photoelectrochemical CO2 reduction.Various metal oxide photocatalysts with wide band gaps have been developed for water splitting under UV light irradiation. However, these bare metal oxide photocatalysts without a cocatalyst do not show high photocatalytic CO2 reduction activity in an aqueous solution. The issue comes from lack of a reaction site for CO2 reduction and competitive reaction between water and CO2 reduction. This raises a key issue to find a cocatalyst and optimize reaction conditions defining this research field. Loading a Ag cocatalyst as a CO2 reduction site and NaHCO3 addition for a smooth supply of hydrated CO2 molecules as reactant are beneficial for efficient photocatalytic CO2 reduction. Ag/BaLa4Ti4O15 and Ag/NaTaO3:Ba reduce CO2 to CO as a main reduction reaction using water as an electron donor even in just water and an aqueous NaHCO3 solution. A Rh-Ru cocatalyst on NaTaO3:Sr gives CH4 with 10% selectivity (Faradaic efficiency) based on the number of reacted electrons in the photocatalytic CO2 reduction accompanied by O2 evolution by water oxidation.Visible-light-responsive photocatalyst systems are indispensable for efficient sunlight utilization. Z-scheme systems using CuGaS2, (CuGa)1-xZn2xS2, CuGa1-xInxS2, and SrTiO3:Rh as CO2-reducing photocatalyst, BiVO4 as O2-evolving photocatalyst, and reduced graphene oxide (RGO) and Co-complex as electron mediator or without an electron mediator are active for CO2 reduction using water as an electron donor under visible light irradiation. These metal sulfide photocatalysts have the potential to take part in Z-scheme systems for artificial photosynthetic CO2 reduction, even though their ability to extract electrons from water is insufficient.A photoelectrochemical system using a photocathode is also attractive for CO2 reduction under visible light irradiation. For example, p-type CuGaS2, (CuGa)1-xZn2xS2, Cu1-xAgxGaS2, and SrTiO3:Rh function as photocathodes for CO2 reduction under visible light irradiation. Moreover, introducing a conducting polymer as a hole transporter and surface modification with Ag and ZnS improve photoelectrochemical performance.


Asunto(s)
Electrones , Agua , Dióxido de Carbono/química , Catálisis , Fotosíntesis , Agua/química
2.
J Am Chem Soc ; 144(5): 2323-2332, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35076230

RESUMEN

We demonstrated photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by a Z-scheme photocatalyst and a photoelectrochemical cell using bare (CuGa)0.5ZnS2 prepared by a flux method as a CO2-reducing photocatalyst. The Z-scheme system employing the bare (CuGa)0.5ZnS2 photocatalyst and RGO-(CoOx/BiVO4) as an O2-evolving photocatalyst produced CO of a CO2 reduction product accompanied by H2 and O2 in a simple suspension system without any additives under visible light irradiation and 1 atm of CO2. When a basic salt (i.e., NaHCO3, NaOH, etc.) was added into the reactant solution (H2O + CO2), the CO formation rate and the CO selectivity increased. The same effect of the basic salt was observed for sacrificial CO2 reduction using SO32- as an electron donor over the bare (CuGa)0.5ZnS2 photocatalyst. The selectivity for the CO formation of the Z-schematic CO2 reduction reached 10-20% in the presence of the basic salt even in an aqueous solution and without loading any cocatalysts on the (CuGa)0.5ZnS2 metal sulfide photocatalyst. It is notable that CO was obtained accompanied by reasonable O2 evolution, indicating that water was an electron donor for the CO2 reduction. Moreover, the present Z-scheme system also showed activity for solar CO2 reduction using water as an electron donor. The bare (CuGa)0.5ZnS2 powder loaded on an FTO glass was also used as a photocathode for CO2 reduction under visible light irradiation. CO and H2 were obtained on the photocathode with 20% and 80% Faradaic efficiencies at 0.1 V vs RHE, respectively.

3.
Angew Chem Int Ed Engl ; 59(18): 7076-7082, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32043742

RESUMEN

The activity of many water-splitting photocatalysts could be improved by the use of RhIII -CrIII mixed oxide (Rh2-x Crx O3 ) particles as cocatalysts. Although further improvement of water-splitting activity could be achieved if the size of the Rh2-x Crx O3 particles was decreased further, it is difficult to load ultrafine (<2 nm) Rh2-x Crx O3 particles onto a photocatalyst by using conventional loading methods. In this study, a new loading method was successfully established and was used to load Rh2-x Crx O3 particles with a size of approximately 1.3 nm and a narrow size distribution onto a BaLa4 Ti4 O15 photocatalyst. The obtained photocatalyst exhibited an apparent quantum yield of 16 %, which is the highest achieved for BaLa4 Ti4 O15 to date. Thus, the developed loading technique of Rh2-x Crx O3 particles is extremely effective at improving the activity of the water-splitting photocatalyst BaLa4 Ti4 O15 . This method is expected to be extended to other advanced water-splitting photocatalysts to achieve higher quantum yields.

4.
Faraday Discuss ; 215(0): 313-328, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31017593

RESUMEN

Various types of Z-scheme systems for water splitting under visible light irradiation were successfully developed by employing Rh- and Ir-doped metal oxide powdered materials with relatively narrow energy gaps (EG): BaTa2O6:Ir,La (EG: 1.9-2.0 eV), NaTaO3:Ir,La (EG: 2.1-2.3 eV), SrTiO3:Ir (EG: 1.6-1.8 eV), NaNbO3:Rh,Ba (EG: 2.5 eV) and TiO2:Rh,Sb (EG: 2.1 eV), with conventional SrTiO3:Rh (an H2-evolving photocatalyst) or BiVO4 (an O2-evolving photocatalyst), and suitable electron mediators. The Z-scheme systems were classified into three groups depending on the combination of H2- and O2-evolving photocatalysts and electron mediator. The Z-scheme systems combining BaTa2O6:Ir,La with BiVO4, and NaTaO3:Ir,La with BiVO4 were active when a [Co(bpy)3]3+/2+ redox couple was used rather than an Fe3+/2+ one. The combination of SrTiO3:Ir with SrTiO3:Rh gave an activity when the [Co(bpy)3]3+/2+ and Fe3+/2+ redox couple ionic mediators were used. The Z-scheme systems combining NaNbO3:Rh,Ba and TiO2:Rh,Sb with SrTiO3:Rh showed activities by using the [Co(bpy)3]3+/2+ and Fe3+/2+ redox couples and also via interparticle electron transfer by just contact with/without reduced graphene oxide (RGO). These suitable combinations can be explained based on the impurity levels of doped Rh3+ and Ir3+ toward the redox potentials of the ionic mediators for the Z-scheme systems employing ionic mediators, and p-/n-type and onset potentials of the photocurrent in the photoelectrochemical properties of those photocatalyst materials for the Z-scheme systems working via interparticle electron transfer.

5.
Faraday Discuss ; 198: 397-407, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28287650

RESUMEN

CuGaS2, (AgInS2)x-(ZnS)2-2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9-(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO-TiO2 composite) were only dispersed in water under 1 atm of CO2.

6.
J Am Chem Soc ; 138(32): 10260-4, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27459021

RESUMEN

Metal sulfides are highly active photocatalysts for water reduction to form H2 under visible light irradiation, whereas they are unfavorable for water oxidation to form O2 because of severe self-photooxidation (i.e., photocorrosion). Construction of a Z-scheme system is a useful strategy to split water into H2 and O2 using such photocorrosive metal sulfides because the photogenerated holes in metal sulfides are efficiently transported away. Here, we demonstrate powdered Z-schematic water splitting under visible light and simulated sunlight irradiation by combining metal sulfides as an H2-evolving photocatalyst, reduced graphene oxide (RGO) as an electron mediator, and a visible-light-driven BiVO4 as an O2-evolving photocatalyst. This Z-schematic photocatalyst composite is also active in CO2 reduction using water as the sole electron donor under visible light.

7.
Small ; 12(38): 5295-5302, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27442495

RESUMEN

Efficient interfacial charge transfer is essential in graphene-based semiconductors to realize their superior photoactivity. However, little is known about the factors (for example, semiconductor morphology) governing the charge interaction. Here, it is demonstrated that the electron transfer efficacy in reduced graphene oxide-bismuth oxide (RGO/BiVO4 ) composite is improved as the relative exposure extent of {010}/{110} facets on BiVO4 increases, indicated by the greater extent of photocurrent enhancement. The dependence of charge transfer ability on the exposure degree of {010} relative to {110} is revealed to arise due to the difference in electronic structures of the graphene/BiVO4 {010} and graphene/BiVO4 {110} interfaces, as evidenced by the density functional theory calculations. The former interface is found to be metallic with higher binding energy and smaller Schottky barrier than that of the latter semiconducting interface. The facet-dependent charge interaction elucidated in this study provides new aspect for design of graphene-based semiconductor photocatalyst useful in manifold applications.

8.
J Am Chem Soc ; 137(2): 604-7, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25551584

RESUMEN

Z-schematic water splitting was successfully demonstrated using metal sulfide photocatalysts that were usually unsuitable for water splitting as single particulate photocatalysts due to photocorrosion. When metal sulfide photocatalysts with a p-type semiconductor character as a H2-evolving photocatalyst were combined with reduced graphene oxide-TiO2 composite as an O2-evolving photocatalyst, water splitting into H2 and O2 in a stoichiometric amount proceeded. In this system, photogenerated electrons in the TiO2 with an n-type semiconductor character transferred to the metal sulfide through a reduced graphene oxide to achieve water splitting. Moreover, this system was active for solar water splitting.

9.
J Am Chem Soc ; 137(15): 5053-60, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25802975

RESUMEN

Photoelectrochemical (PEC) devices that use semiconductors to absorb solar light for water splitting offer a promising way toward the future scalable production of renewable hydrogen fuels. However, the charge recombination in the photoanode/electrolyte (solid/liquid) junction is a major energy loss and hampers the PEC performance from being efficient. Here, we show that this problem is addressed by the conformal deposition of an ultrathin p-type NiO layer on the photoanode to create a buried p/n junction as well as to reduce the charge recombination at the surface trapping states for the enlarged surface band bending. Further, the in situ formed hydroxyl-rich and hydroxyl-ion-permeable NiOOH enables the dual catalysts of CoO(x) and NiOOH for the improved water oxidation activity. Compared to the CoO(x) loaded BiVO4 (CoO(x)/BiVO4) photoanode, the ∼6 nm NiO deposited NiO/CoO(x)/BiVO4 photoanode triples the photocurrent density at 0.6 V(RHE) under AM 1.5G illumination and enables a 1.5% half-cell solar-to-hydrogen efficiency. Stoichiometric oxygen and hydrogen are generated with Faraday efficiency of unity over 12 h. This strategy could be applied to other narrow band gap semiconducting photoanodes toward the low-cost solar fuel generation devices.

10.
Phys Chem Chem Phys ; 16(44): 24417-22, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25301205

RESUMEN

KCaSrTa5O15 with tungsten bronze structure and a band gap of 4.1 eV showed activity for water splitting without cocatalysts. The activity was improved by loading the NiO cocatalyst. The apparent quantum yield of optimized NiO-loaded KCaSrTa5O15 was 2.3% at 254 nm for water splitting. When CO2 gas was bubbled into the reactant aqueous solution, Ag cocatalyst-loaded KCaSrTa5O15 produced CO and H2 as reduction products of CO2 and H2O, respectively, and O2 as an oxidation product of H2O. The carbon source of CO was confirmed to be CO2 molecules by using (13)CO2. The ratio of the number of electrons to that of holes calculated from the amounts of products (CO, H2 and O2) was almost unity. Additionally, the ratio of the turnover number of electrons consumed for CO production to the total number of an Ag atom of the cocatalyst that was the active site for CO2 reduction was 8.6 at 20 h. These results indicate that water was consumed as an electron donor for this photocatalytic CO2 reduction in an aqueous medium. Thus, KCaSrTa5O15 with tungsten bronze structure has arisen as a new photocatalyst that is active for water splitting and CO2 reduction utilizing water as an electron donor.

11.
ACS Appl Mater Interfaces ; 16(28): 36423-36432, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953879

RESUMEN

Modification with conductive organic polymers consisting of a thiophane- or pyrrole-based backbone improved the cathodic photocurrent of a particulate-CuGaS2-based photoelectrode under simulated solar light. Among these polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) was the most effective in the improvements, providing a photocurrent 670 times as high as that of the bare photocathode. An incident-photon-to-current efficiency (IPCE) for water reduction to form H2 under monochromatic light irradiation (450 nm at 0 V vs RHE) was ca. 11%. The most important point is that modification of the conductive organic polymers does not involve any vacuum processes. This importance lies in the use of an electrochemically oxidative polymerization, not in a physical process such as vapor deposition of metal conductors. This is expected to be advantageous in the large-scale application of photocathodes consisting of particulate photocatalyst materials toward industrial solar-hydrogen production using photoelectrochemical-cell-based devices. Artificial photosynthesis of water splitting and CO2 reduction under simulated solar light was demonstrated by combining the PEDOT-modified CuGaS2 photocathode with a CoOx-loaded BiVO4 photoanode. Furthermore, how the cathodic photocurrent of the particulate-CuGaS2-based photocathode was drastically improved by the modification was clarified based on various characterizations and control experiments as follows: (1) selectively filling cavities between the particulate CuGaS2 photocatalysts and a conductive substrate (FTO; fluorine-doped tin oxide) with the polymers and (2) using a large driving force for carrier transportation governed by the polymers' redox potentials adjusted by functional groups.

12.
ChemSusChem ; 17(12): e202400408, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38622065

RESUMEN

The development of a highly active photocatalyst for visible-light water splitting requires a high-quality semiconductor material and a cocatalyst, which promote both the migration of photogenerated charge carriers and surface redox reactions. In this work, a cocatalyst was loaded onto an oxyfluoride photocatalyst, Pb2Ti2O5.4F1.2, to improve the water oxidation activity. Among the metal oxides examined as cocatalysts, RuO2 was found to be the most suitable, and the O2 evolution activity depended on the preparation conditions for Ru/Pb2Ti2O5.4F1.2. The highest activity was obtained with RuCl3-impregnated Pb2Ti2O5.4F1.2 heated under a flow of H2 at 523 K. The H2-treated Ru/Pb2Ti2O5.4F1.2 showed an O2 evolution rate an order of magnitude higher than those for the analogues without the H2 treatment (e. g., RuO2/Pb2Ti2O5.4F1.2). Physicochemical analyses by X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and time-resolved microwave conductivity measurements indicated that the optimized photocatalyst contained partially reduced RuO2 species with a particle size of ~5 nm. These partially reduced species effectively trapped the photogenerated charge carriers and promoted the oxidation of water into O2. The optimized Ru/Pb2Ti2O5.4F1.2 could function as an O2-evolving photocatalyst in Z-scheme overall water splitting, in combination with an Ru-loaded, Rh-doped SrTiO3 photocatalyst.

13.
Chem Commun (Camb) ; 59(81): 12168-12171, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37747046

RESUMEN

The effectiveness of the treatment of a (CuGa)0.5ZnS2 H2-evolving photocatalyst in an aqueous Na2S solution for Z-schematic water splitting under visible light irradiation is demonstrated. The treatment suppresses undesired consumption of photogenerated holes, including photocorrosion of (CuGa)0.5ZnS2.

14.
Chem Commun (Camb) ; 59(51): 7911-7914, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37254710

RESUMEN

Ag+ substitution was applied to a tungsten-bronze-type metal oxide. An AgSr2Ta5O15 photocatalyst has emerged for water splitting and CO2 reduction. DFT calculation and diffuse reflection spectra revealed that the Ag d-orbital formed a new valence band, leading to a narrow band gap (3.91 eV) compared to that of NaSr2Ta5O15 (4.11 eV).


Asunto(s)
Dióxido de Carbono , Agua , Óxidos , Teoría Funcional de la Densidad
16.
Chem Commun (Camb) ; 58(93): 12951-12954, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36321568

RESUMEN

Ir and Sr-codoped KNbO3 has been found to be a novel photocatalyst for sacrificial O2 evolution under visible light irradiation. The Ir and Sr-codoped KNbO3 developed worked as an O2-evolving photocatalyst for Z-schematic water splitting under visible light irradiation when Ru-loaded SrTiO3 doped with Rh was employed as a H2-evolving photocatalyst.

17.
J Am Chem Soc ; 133(29): 11054-7, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21711031

RESUMEN

The effectiveness of reduced graphene oxide as a solid electron mediator for water splitting in the Z-scheme photocatalysis system is demonstrated. We show that a tailor-made, photoreduced graphene oxide can shuttle photogenerated electrons from an O(2)-evolving photocatalyst (BiVO(4)) to a H(2)-evolving photocatalyst (Ru/SrTiO(3):Rh), tripling the consumption of electron-hole pairs in the water splitting reaction under visible-light irradiation.

18.
Phys Chem Chem Phys ; 13(29): 13421-6, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21706080

RESUMEN

Tungsten oxide (WO(3)) electrodes subjected to a positive bias are self-photorecharged with alkali cations in the electrolyte during visible light illumination. Upon photoexcitation, part of the photogenerated charges generated by WO(3) is stabilized by the cations and stored in situ within the WO(3) framework. This light-induced storage of charges is subsequently utilized in dark conditions in an on-demand manner and is able to be recharged in the successive illumination cycles. The amount of charges stored is shown to be dependent on the cation ionic radii and the presence of these intercalated cations is verified by X-ray diffraction (XRD) and inductively coupled plasma mass spectroscopy (ICP-MS). This self-photorecharge and on-demand charge-release phenomena demonstrate the ability of WO(3) to supply photoexcited charges under dark condition in a photoelectrochemical reaction with greater flexibility.

19.
Chem Commun (Camb) ; 57(80): 10331-10334, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34553707

RESUMEN

Ir and La-codoped KTaO3 has arisen as a novel powdered photocatalyst responding to visible light up to a wavelength of 600 nm. RhCrO3-loaded KTaO3 codoped with Ir and La splits water into H2 and O2 under visible light irradiation.

20.
Chem Sci ; 11(9): 2330-2334, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32206292

RESUMEN

Improvement of water splitting performance of AgTaO3 (BG 3.4 eV) of a valence-band-controlled photocatalyst was examined. Survey of cocatalysts revealed that a Rh0.5Cr1.5O3 cocatalyst was much more effective than Cr2O3, RuO2, NiO and Pt for water splitting into H2 and O2 in a stoichiometric amount. The optimum loading amount of the Rh0.5Cr1.5O3 cocatalyst was 0.2 wt%. The apparent quantum yield (AQY) at 340 nm of the optimized Rh0.5Cr1.5O3(0.2 wt%)/AgTaO3 photocatalyst reached to about 40%. Rh0.5Cr1.5O3(0.2 wt%)/AgTaO3 gave a solar to hydrogen conversion efficiency (STH) of 0.13% for photocatalytic water splitting under simulated sunlight irradiation. Bubbles of gasses evolved by the solar water splitting were visually observed under atmospheric pressure at room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA