Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(13): 132002, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32302155

RESUMEN

We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment with all errors systematically controlled. Several ensembles using 2+1 flavors of physical mass Möbius domain-wall fermions, generated by the RBC and UKQCD collaborations, are employed to take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find a_{µ}^{HLbL}=7.87(3.06)_{stat}(1.77)_{sys}×10^{-10}. Our value is consistent with previous model results and leaves little room for this notoriously difficult hadronic contribution to explain the difference between the standard model and the BNL experiment.

2.
Phys Rev Lett ; 121(20): 202003, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500227

RESUMEN

We propose and apply a new approach to determining |V_{us}| using dispersion relations with weight functions having poles at Euclidean (spacelike) momentum which relate strange hadronic τ decay distributions to hadronic vacuum polarization (HVP) functions obtained from lattice quantum chromodynamics. We show examples where spectral integral contributions from the region where experimental data have large errors or do not exist are strongly suppressed but accurate determinations of the relevant lattice HVP combinations remain possible. The resulting |V_{us}| agrees well with determinations from K physics and three-family Cabibbo-Kobayashi-Maskawa unitarity. Advantages of this new approach over the conventional hadronic τ decay determination employing flavor-breaking sum rules are also discussed.

3.
Phys Rev Lett ; 118(2): 022005, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28128628

RESUMEN

We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48^{3}×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a_{µ}^{HLbL}=5.35(1.35)×10^{-10}, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.

4.
Phys Rev Lett ; 114(1): 012001, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615460

RESUMEN

The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

5.
Phys Rev Lett ; 109(7): 072002, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-23006361

RESUMEN

The effect of sea quark electromagnetic charge on meson masses is investigated, and first results for full QED+QCD low-energy constants are presented. The electromagnetic charge for sea quarks is incorporated in quenched QED+full QCD lattice simulations by a reweighting method. The reweighting factor, which connects quenched and unquenched QED, is estimated using a stochastic method on 2+1 flavor dynamical domain-wall quark ensembles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA